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Metabolic reaction network-based recursive
metabolite annotation for untargeted
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Large-scale metabolite annotation is a challenge in liquid chromatogram-mass spectrometry

(LC-MS)-based untargeted metabolomics. Here, we develop a metabolic reaction network

(MRN)-based recursive algorithm (MetDNA) that expands metabolite annotations without

the need for a comprehensive standard spectral library. MetDNA is based on the rationale

that seed metabolites and their reaction-paired neighbors tend to share structural similarities

resulting in similar MS2 spectra. MetDNA characterizes initial seed metabolites using a small

library of MS2 spectra, and utilizes their experimental MS2 spectra as surrogate spectra to

annotate their reaction-paired neighbor metabolites, which subsequently serve as the basis

for recursive analysis. Using different LC-MS platforms, data acquisition methods, and bio-

logical samples, we showcase the utility and versatility of MetDNA and demonstrate that

about 2000 metabolites can cumulatively be annotated from one experiment. Our results

demonstrate that MetDNA substantially expands metabolite annotation, enabling quantita-

tive assessment of metabolic pathways and facilitating integrative multi-omics analysis.
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Untargeted metabolomics aims to provide mechanistic
insights by systematically characterizing metabolic chan-
ges in relevance to the physiological and pathological

status at the system level1,2. Yet large scale and unambiguous
annotation of metabolites remains a challenging task in liquid
chromatogram-mass spectrometry (LC-MS)-based untargeted
metabolomics3,4. Using accurate mass alone for metabolite
annotation is impossible due to the high rates of false positive and
high redundancy5. The widely used strategy in the identification
of metabolites is to match experimental tandem mass spectro-
metry data (MS2 spectrum) with those from the standard spectral
library6,7. This conventional method, however, is significantly
limited by the fact that more than 90% of known metabolites in
HMDB [http://www.hmdb.ca/] and METLIN [https://metlin.
scripps.edu/] have no standard MS2 spectra8, and that expand-
ing the existing spectral library is hindered by the lack of chemical
standards for many cellular metabolites. Moreover, this strategy
suffers from having a poor standardization protocol for curating
spectral libraries, due to uncharacterized spectral variations across
different LC-MS instruments and laboratories8. Instead, sig-
nificant efforts have been made to predict the MS2 spectra in
silico for metabolites with high chemical diversity, such as Met-
Frag9, CFM-ID10, CSI:FingerID11, MyCompoundID12, MS-
FINDER13, and DEREPLICATOR+14, and the accuracy for this
approach has been substantially improved15.

Alternatively, molecular and metabolic pathway can be utilized
to facilitate the metabolite annotation. Several approaches, such
as Mummichog16 and PIUMet17, map dysregulated metabolic
features into a metabolic network and predict the pathway
activity without unambiguous annotations of metabolites. How-
ever, these algorithms assume the local enrichment of dysregu-
lated features into the specific pathways, which are sometimes
inconsistently met or observed in biological samples18. Other
approaches, such as Global Natural Products Social Molecular
Networking (GNPS)19, construct the molecular similarity net-
work from the mass spectrometry data, and aim to annotate the
unknown metabolites through annotated metabolite within the
same sub-network. Specifically, Network Annotation Propagation
(NAP)20 and BioCAn21 constructed the molecular network using
molecular similarity and reaction information, respectively. Then,
the metabolites in the network were matched to experimental
and/or in silico predicted MS2 spectral databases. Then, it was
hypothesized that one annotated node with more reliable
neighbor metabolites was more accurate. So the annotations were
re-ranked based on their neighbor metabolites. When the anno-
tations are practically targeted to known chemical spaces in pri-
mary metabolisms, the information of metabolic reactions can be
incorporated to increase the confidence of metabolite
annotations.

Here, we develop a strategy, MetDNA (Metabolite annotation
and Dysregulated Network Analysis), which implements a
metabolic reaction network (MRN)-based recursive algorithm for
metabolite annotation. In the cellular context, one metabolite can
be catalyzed into another metabolite product. We thus define a
reaction pair (or reactant pair, RP) by linking a substrate meta-
bolite with its product metabolite displaying similar chemical
structures. Notably in tandem MS, the fragmentation pattern of a
metabolite is determined by its chemical structure; hence, two
metabolites in a reaction pair tend to share similar MS2 spectra
due to their structural similarities. As such, MetDNA can in
principle annotate unknown metabolites using reaction-paired
neighbor metabolites but not necessarily through existing
MS2 spectra from the standard spectral library. More impor-
tantly, the reiterated application of this strategy allows progressive
expansion of annotated metabolites via the recursive algorithm.
Our data show that MetDNA significantly increases the number

of annotated metabolites from less than 100 of conventional
analysis to more than 2000 metabolites in one experiment.
MetDNA also includes a self-check scoring system that dimin-
ishes the redundancy and uncertainty hits. Altogether, we pro-
pose that MetDNA allows a large-scale annotation of metabolites
for untargeted metabolomics without a comprehensive standard
spectral library, substantially advancing the omic-level study of
metabolites for complex biological events.

Results
Reaction-paired metabolites share similar MS2 spectra. We
retrieved all RPs from the KEGG database (9603 RPs and 7639
metabolites) and further constructed a metabolic reaction net-
work (MRN, Fig. 1a). In the MRN, one node represents one
metabolite and two metabolites connected by an edge represent
the reaction-paired neighbor metabolites. To test whether struc-
turally similar metabolites in a reaction pair have a high chance to
share similar MS2 spectra, we used three spectral databases of
metabolites: our in-house library22, NIST17 [https://chemdata.
nist.gov/], and METLIN. While neighbor metabolites in RPs were
retrieved, the same number of metabolites from non-RPs was also
generated as controls. Then we compared four scoring methods
(dot product (DP)23, bonanza24, hybrid similarity search (HSS)25,
and GNPS26) and finally chosen DP to compare MS2 spectral
similarity between metabolites in RPs and non-RPs (Supple-
mentary Note 1 and Methods). In our in-house library, more than
55.3% of reaction-paired neighbor metabolites have a DP score
larger than 0.5. In contrast, only 5.2% of non-neighbor metabo-
lites have a DP score larger than 0.5 (Fig. 1b). Consistently, the
other two independent databases showed similar results (Fig. 1b).
To demonstrate how the cosine similarities decay as a function of
the reaction distance between two metabolites, we constructed
RPs and non-RPs with two, three, four, and five steps, respec-
tively. As shown in Supplementary Fig. 1, the percentages of RPs
with DP > 0.5 significantly decreased to 26.5%, 15.5%, 10.3%, and
8.0% from 55.3% (with 1 step) for two, three, four, and five
reaction steps, respectively. Combined, our data demonstrated
that reaction-paired neighbor metabolites tend to share similar
MS2 spectra compared to non-RP metabolites.

MRN-based recursive metabolite annotation. We developed the
MetDNA workflow for the MRN based recursive metabolite
annotation (Fig. 1c, d, Supplementary Fig. 2). To determine the
effect, we applied the MetDNA workflow using untargeted
metabolomics data from Drosophila aging samples (Drosophila
melanogaster; 3 day vs. 30 day; Methods). For the positive mode
dataset, we detected a total of 18,320 MS1 peaks (6428 have
MS2 spectra) using XCMS27. We first annotated 134 metabolites
using the standard spectral library. Among 134 metabolites, we
selected 132 metabolites with KEGG IDs as the initial seed
metabolites to map the MRN and retrieved their reaction-paired
neighbor metabolites (Fig. 2a). At the first round, 654 neighbor
metabolites were retrieved. Specifically, 150 of 654 metabolites
were annotated by matching the calculated m/z, theoretical
retention times (RTs) and surrogate MS2 spectra from the seed
metabolites with the experimental data (Fig. 2a, Supplementary
Figs. 3 and 4, details in Methods). However, 42 out of 150
metabolites were the same as seeds in the first round. Therefore,
we excluded them as new seeds for next round of annotation to
reduce the redundancy and computational cost in the recursive
annotation. The seed selection was performed after each round of
annotation. As results, we only selected 108 out of the 150
metabolites as new seed metabolites for the second round of
annotation. Then, 529 reaction-paired neighbor metabolites were
retrieved, and 299 were annotated using the surrogate
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MS2 spectra from 108 seed metabolites. This seed selection-
neighbor retrieval-neighbor annotation cycle was reiterated for 19
rounds, at which step no new metabolites could be annotated
(Fig. 2a). We evaluated the confidence of the metabolite anno-
tations and removed redundant hits (see Methods). For the
positive mode, this analysis pinpointed a total of 1314 metabolites
(Fig. 2a and Supplementary Figs. 3 and 4). We then repeated this
analysis for the negative mode and determined a total of 1402
metabolites through 14 rounds of recursive annotation (Fig. 2b
and Supplementary Figs. 5 and 6). In sum, a total of 1983
metabolites were cumulatively annotated from a single experi-
ment (Fig. 2c). Notably, majority of the metabolites were resolved
from the first eight recursive rounds, which accounted for more
than 85% of total output. To improve the accuracy of the
MetDNA workflow, the RT match threshold, weight for anno-
tation scores, and score cutoffs were optimized according to
annotation correct rate and propagation of misannotations

(Supplementary Note 2 and Supplementary Figs. 7–9). As a
result, as the recursive annotation progressed, the confidence level
for each round remained unchanged (Supplementary Fig. 10).
According to definitions from Metabolomics Standards Initiative
(MSI)28, the annotation results given by MetDNA (except the
initial seed metabolites) are level 3 of annotation.

To demonstrate an example, we conducted an in-depth
assessment of L-arginine (KEGG ID: C00062), which, as a seed
metabolite, resulted in the annotation of additional 28 metabolites
by MetDNA (Fig. 2e). Among them, six metabolites were
successfully validated using chemical standards, and six metabo-
lites were further validated using NIST, METLIN, or HMDB
library (Supplementary Fig. 11). The in silico MS2 spectra for the
remaining 16 metabolites were predicted using CFM-ID10, and
compared to the experimental data (Supplementary Table 1). As a
result, 6 out of 16 metabolites were validated with DP scores
> 0.5, and 10 out of 16 metabolites had DP scores < 0.5. Similarly,
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Fig. 1 Metabolic reaction network and spectral similarity of neighbor metabolites in reaction pairs. a The construction of MRN using the reaction pairs
retrieved from KEGG. An example is given to show that structurally similar reaction-paired neighbor metabolites have a high similarity of MS2 spectra.
b Spectral similarity between metabolites in reaction and non-reaction pairs, respectively. Data were retrieved from three spectral libraries: in-house
library, NIST17, and METLIN. c Illustration of MRN-based recursive annotation. Seed metabolites (red triangle) from round 0 are first mapped to MRN and
all reaction-paired neighbor metabolites are retrieved (gray circle). The neighbor metabolites are then annotated by using the matching m/z, surrogate
MS2 spectrum, and theoretical RT with unknown peaks (gray square, round 1). The recursive annotation runs until there are no new annotated metabolites
(round n). d The overall workflow for MetDNA: (1) import of MS1 peak table and MS2 data; (2) annotation of initial seed metabolites; (3) annotation of
reaction-paired neighbor metabolites; (4) MRN-based recursive annotation; (5) confidence assignment and redundancy removal; and (6) dysregulated
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we also provided additional examples to illustrate the effective-
ness of the recursive process (Supplementary Fig. 12).

We further examined MetDNA workflow with a variety of
model organisms, including Escherichia coli, Caenorhabditis
elegans, Mus musculus, and Homo sapiens with a wide array of
sample types (prokaryotic cells, whole-body tissue, mammalian
cells, brain tissue, liver tissue, colorectal tissue, and urine,

Supplementary Table 2 and Supplementary Note 3). As noted,
data were acquired from three different instrument platforms
(Sciex TripleTOF, Agilent QTOF and Thermo Orbitrap) and
MS2 spectral data were obtained using different acquisition
methods such as data-dependent acquisition (DDA), data
independent acquisition (DIA), or targeted MS2 acquisition.
Using MetDNA, our analysis consistently annotated more than
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2000 metabolites from single experiment (Fig. 2f, and Supple-
mentary Table 3). Taken together, our data demonstrated that
MetDNA is a platform-independent and versatile tool.

Validation of MetDNA analysis accuracy. MetDNA is a bioin-
formatic tool to annotate metabolites in real biological samples.
Therefore, we designed the following validation experiments to
evaluate the annotation accuracy of MetDNA (Fig. 3). We sys-
tematically compared the annotation results from the same bio-
logical samples between MetDNA and other approaches. Each
validation experiment represented different confidence levels and
different sizes of chemical search space. For the first experiment, a
total of 200 (167 metabolites included in MRN) chemical stan-
dards were added into mouse liver samples as spike-in (Supple-
mentary Data 1, Supplementary Note 4). Manual analysis of the
experimental data with the comparison to the data of chemical
standards (m/z, RT, and MS2 spectra) demonstrated that 113 and
137 metabolites were detected and identified in positive and

negative modes, respectively, which were considered as the level 1
identification according to MSI28. As a comparison, MetDNA
successfully annotated 89 out of 113 (78.8%) and 113 out of 137
(82.5%) metabolites in positive and negative modes, respectively,
indicating a high annotation coverage (Fig. 3a). All the
MS2 spectra of 200 standards were intentionally removed from
the standard spectral library, therefore, excluding them as the
initial seed metabolites. The spike-in metabolites were all anno-
tated through the MRN-based recursive strategy from round 2 to
9. Compared to chemical standards, we divided MetDNA anno-
tation results into three categories: correct, isomeric, and erro-
neous annotations among top n ranked candidates, which is
similar to other metabolite annotation tools10,11. In our study, top
three candidates were used to evaluate the performance of
annotation except the specific statement. In MetDNA output for
positive mode, the percentage of the correct annotation was
77.5% among top three candidates, whereas isomer and erro-
neous annotations were only 12.4% and 10.1% among top three
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candidates, respectively (Fig. 3b, Supplementary Data 2). The
average ranking of correct annotations was 1.3. Similar results
were also obtained for negative mode of the mouse liver dataset
(Supplementary Fig. 13, Supplementary Data 2).

For the second validation experiment, we first confirmed the
structures of 107 seed metabolites using chemical standards in
positive mode of the Drosophila aging dataset (Supplementary
Data 3), which were also considered as the MSI level 1
identification28. We randomly chose 30% of the metabolites as
seeds, and asked whether MetDNA could correctly annotate the
rest 70% metabolites. This experiment has been repeated 10
times. As a result, a coverage of 90.9% of metabolites could be
successfully annotated (Fig. 3c), which means that 90.9% of
metabolites can be annotated by MetDNA. For the annotated
metabolites, the percentages for the correct, isomeric, and
erroneous annotations among top three candidates were 81.1%,
6.3%, and 12.6%, respectively (Fig. 3d). Similar results were also
obtained for negative mode of Drosophila and Escherichia coli
datasets (Supplementary Fig. 14 and Supplementary Data 4–6).

For the third validation experiment, we employed the external
NIST17 and MassBank [http://www.massbank.jp] spectral data-
bases (Supplementary Note 4). As noted, there are 2608 and 1464
metabolites in NIST and MassBank acquired on Q-TOF
instruments, respectively. A total of 279 and 206 metabolites
were identified from two spectral databases in positive and
negative modes, respectively. The low ratio may be due to the
insufficient measurement of metabolites in libraries on the
particular LC-MS condition, or uncharacterized spectral varia-
tions across different LC-MS instruments and laboratories (i.e.,
between the experimental data and library data). Consistently,
MetDNA successfully annotated 156 out of 279 (55.9%) and 128
out of 206 (62.1%) metabolites in positive and negative modes,
respectively. The percentage for the correct annotation among top
three candidates was 74.0%, whereas isomer and erroneous
annotations were about 4.5% and 21.5%, respectively (Fig. 3e, f,
Supplementary Fig. 15 and Supplementary Data 7). Collectively,
these validation experiments demonstrated that the overall
performance of MetDNA attains approximately 70–80% for
correct annotations among top three candidates and 80–90% for
correct formula annotation (correct and isomer) among top three
candidates. In addition, the correct annotation rate among top
three candidates should be considered as a true positive rate,
which was 70–80% in different validation experiments. Mean-
while, the erroneous annotation among top three candidates rate
should be considered as the false-positive rate, which was 10–20%
in different validation experiments.

Finally, we also performed the benchmark comparison using in
silico MS2 spectral prediction tool CFM-ID10 (Supplementary
Note 4). We predicted all the MS2 spectra of metabolites in MRN
using CFM-ID with the pre-trained model and recommended
parameters to construct an in silico MS2 spectra library, so the
chemical space of this in silico MS2 spectral library is the same as
MetDNA. It is worthy to note that although we and others29 used
the pre-trained model in CFM-ID to generate in silico
MS2 spectra, the use of local dataset for training helps to improve
the performance of these machine learning-based prediction tools.
Then, we utilized the in silico MS2 spectra library for metabolite
annotation of Drosophila aging datasets. As shown in Fig. 3g, 337
and 383 metabolites were annotated for positive and negative
modes, respectively, and 651 metabolites were annotated in total.
From the aspect of the annotation number, MetDNA provided a
much higher number of annotation metabolites than CFM-ID
with the same chemical search space (Fig. 3g).

We also used our first validation experiment to evaluate the
annotation accuracy using CFM-ID. For the positive mode, the
top 1–3 correct annotation rates for in silico MS2 spectral match

were 57.4%, 67.6%, and 70.6%, respectively. As a comparison, the
correct annotation rates for MetDNA were 66.3%, 74.2%, and
77.5% respectively (Fig. 3h). The negative mode dataset had the
similar results (Supplementary Figure 13). All these results
demonstrated that MetDNA annotated much more metabolites
and had higher annotation accuracy than in silico prediction tool
CFM-ID. We further compared the predicted in silico
MS2 spectra with experimental MS2 spectra acquired from the
chemical standards (Supplementary Figure 13). The percentage of
metabolites with DP scores larger than 0.5 is only 36.4%, and the
median DP score was 0.33. These results demonstrated that the
accuracy for the in silico MS2 spectra still requires further
improvement.

Feasibility of MetDNA for the small-sized spectral library. To
evaluate how the size of spectral library could impact the anno-
tation result, we randomly selected a small fraction of seed
metabolites from positive mode of the Drosophila aging dataset as
the initial seeds (Supplementary Note 5). Interestingly, the use of
only 21 metabolites as seeds was sufficient to annotate the similar
number of metabolites compared to that of all 132 seed meta-
bolites (Fig. 4a). In addition, about 88.2% of the annotated peaks
had the exactly same annotations as those derived from all
132 seed metabolites (Fig. 5b). Similar result was obtained for the
coverage of pathway enrichment analysis (Supplementary
Fig. 16). However, when using more initial seed metabolites, the
overall confidence levels were slightly elevated and consequently
the redundancy in the final result was slightly reduced (Supple-
mentary Fig. 17). We observed a similar result from metabo-
lomics dataset of aging mouse samples (Supplementary Fig. 18).
Therefore, the use of a small tandem spectral library is feasible for
the MetDNA analysis, but an increase of tandem spectral library
may help to improve the confidence level, while reducing
redundant annotation of metabolites.

Low propagation of misannotated metabolites. A key feature of
MetDNA is via recursive metabolite annotation. Misannotated
metabolites may propagate during the reiterative process, there-
fore promoting false positive annotations. We constructed four
possible types of misannotated metabolites compared to seed
metabolites, including (1) metabolites with mass error > 25 ppm,
and RT error > 60 s; (2) metabolites with mass error < 25 ppm,
but RT error > 60 s; (3) metabolites with mass error < 25 ppm and
RT error < 60 s; (4) metabolites with mass error < 25 ppm, but RT
error > 60 s, and have high MS2 spectral similarity with seed
metabolite (DP > 0.8, mostly isomers of seed metabolite, Sup-
plementary Table 4). To gauge the consequence of misannota-
tions, we intentionally replaced each of the 107 seed metabolites
with four types of misannotated metabolites in the second vali-
dation experiment from positive mode of the Drosophila aging
dataset, thus resulting four sets of seed cohorts that each repre-
sented one type of misannotated metabolites (Supplementary
Note 6). For example, seed metabolite 4-aminobutanoate was
replaced by phenylethylene (type 1; m/z error: 79.7 ppm; RT
error: 234 s), diacetyl (type 2; m/z error: 0.7 ppm; RT error: 301 s),
D-2-aminobutyrate (type 3;m/z error: 0.7 ppm; RT error: 36 s), or
gamma-butyrolactone (type 4; m/z error: 2.5 ppm; RT error: 227
s; DP: 0.93).

Then MetDNA utilized these misannotated seed metabolites to
perform MRN-based recursive analysis and compared with the
control (i.e., using correct seeds, Fig. 4c). MetDNA analysis
yielded 34, 143, 160, and 218 annotated metabolites, respectively,
from above four sets of seed cohorts using type 1, 2, 3, and 4
misannotated metabolites. As a comparison, MetDNA yielded
1282 metabolites using the original correct seeds (Fig. 4d). The
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numbers of annotated metabolites were consistent with the
degrees of error for misannotated metabolites. As compared from
type 1 to type 4 of misannotated metabolites, they presumably
represent a growing challenge in distinguishing, and therefore
became more likely to propagate during the iterative process.
However, even all seed metabolites were replaced as type 4
metabolites, the resulted error rate was only 17.0% (281 out of
1282), which was consistent with the validation experiments as
shown above (i.e., 70–80% of correct annotations given by
MetDNA). More importantly, by increasing the cutoffs of
annotation scores, we observed that more annotations were
removed from output results using misannotated seeds compared
to controls (Fig. 4e). Therefore, an optimized cutoff score was set
as 0.4, where 29.4%, 42.7%, 75.9%, and 73.9% of annotations were
retained using types 1, 2, 3, and 4 of misannotated seed
metabolites, but up to 93.9% of annotations were retained using
correct seed metabolites (Fig. 4e, Supplementary Fig. 19). Finally,
the mean number of edges (i.e., edge/node density) for correct
seeds, type 1, type 2, type 3, and type 4 misannotated seeds
(mean ± SEM) were calculated as 8.2 ± 2.8, 10.8 ± 2.9, 10.3 ± 3.9,

7.5 ± 3.6, and 6.1 ± 2.7, respectively. So the mean number of edges
had no significant differences between correct seeds and four
types of misannotated seeds. These results proved that the low
propagation of misannotated seeds was not related to the edge
density.

We further characterized the MS2 spectral similarity between
the designed misannotated metabolites and their reaction-paired
neighbor metabolites in MRN (Supplementary Note 6). Interest-
ingly, from type 1 to type 4 misannotated metabolites, spectral
similarity with their neighbors was considerably lower than that
of control. The proportion of the spectral similarity larger than
0.5 was just 6.0%, 10.3%, 11.4%, and 27.7% for types 1, 2, 3, and 4
of misannotated metabolites, respectively. In a sharp contrast, this
proportion rose to 67.5% for control seed metabolites. Combined,
this analysis indicated that misannotated metabolites generally
have low MS2 spectral similarity with their reaction-paired
neighbor metabolites, and thus their propagation probability is
intrinsically low within the MRN-based recursive analysis.
Furthermore, the use of an optimized cutoff sore also helps to
improve the annotation accuracy.
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Fig. 4 MetDNA is robust to small size library and has low propagation of misannotated metabolites. a The numbers of annotated metabolites using
different numbers of initial seed metabolites. b The influence of the initial seed number on the annotations to mimic the different sizes of the tandem
libraries. Red triangles represent the overlap percentages of MS1 peaks with annotations using different initial seed metabolites. Black circles represent the
overlap percentages of MS1 peaks with the exact same annotations using different initial seed metabolites. In both cases, the annotation result using all
132 seed metabolites is used as a control. c The experimental design to evaluate the propagation of misannotated seed metabolites by replacing the correct
seeds with four types of misannotated seeds. The types of misannotated seeds were defined as: Type 1: metabolites with mass errors were large than
25 ppm, and RT error were less than 60 s; Type 2: metabolites with mass errors were within 25 ppm, but RT error large than 60 s; Type 3: metabolites with
mass errors and RT errors were within 25 ppm and 60 s, respectively; Type 4: metabolites with mass errors were within 25 ppm, but RT error were large
than 60 s, and have high MS2 spectral similarity with seed metabolite (dot-product score was higher than 0.8). d The numbers of annotated metabolites
using the correct and four types of misannotated seed metabolites. e The influence of the cutoff of annotation score on the numbers of annotated
metabolites using the correct and four types of misannotated seed metabolites. f Spectral similarity between the correct and four types of misannotated
seed metabolites and their reaction-paired neighbor metabolites

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09550-x ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1516 | https://doi.org/10.1038/s41467-019-09550-x | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Dysregulated metabolic pathways in aging flies. With large-
scale and accurate annotation, MetDNA can perform metabolic
pathway analysis (Methods). During the Drosophila aging pro-
cess, 917 dysregulated peaks (Student’s t-test, FDR-corrected
P values < 0.01, Fig. 5a) and 25 dysregulated metabolic pathways
(hypergeometric test, P values < 0.05, Fig. 5b) were discovered.
Most dysregulated pathways were associated with amino acid and

sugar metabolism (Fig. 5c). One prominent example was the
glycolysis and gluconeogenesis pathway, which was decreased
with age, but increased in PRC2 deficient animals, a long-lived
mutant reported in our recent study30 (Fig. 5d). In addition,
MetDNA analysis revealed that the arginine biosynthesis pathway
had a late-onset increase in old flies, but the extent of increase was
diminished in age-matched PRC2 mutants (Fig. 5e). Since the
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urea cycle included in arginine biosynthesis is the only metabolic
route by which toxic ammonia can be converted into urea to be
excreted from the body31, these data suggested a negative corre-
lation between arginine biosynthesis and urea cycle with adult
lifespan.

Furthermore, a correlation network that combined metabo-
lomics and transcriptomics datasets was constructed, which
displayed a significant coherency between changes in metabolites
and gene expression (Fig. 5f). The glycolysis and gluconeogenesis
pathway, for example, was highly correlated at the level of
metabolite and gene expression, as shown by a correlation
network with 149 edges comprising 24 genes and 16 metabolites
(Fig. 5g, h, Supplementary Fig. 20). Similar results were obtained
for the arginine biosynthesis pathway (Supplementary Fig. 21).
The high correlation between metabolites and gene expression
further validated the high confidence of metabolite annotations
using MetDNA.

Discussion
In this work, we develop MetDNA, a MRN-based recursive
strategy, to significantly increase the number of annotated
metabolites without expanding the size of spectral library.
MetDNA utilizes the principle that structurally similar metabo-
lites in a reaction pair have a high chance to share similar
MS2 spectra. However, we are aware that there are many occa-
sions where a single metabolic biotransformation is sufficient to
significantly alter the MS2 spectra between reaction-paired
neighbor metabolites. MetDNA performs the recursive annota-
tion only using spectrally similar neighbor metabolites. For
example, although L-arginine in Fig. 2e has 26 neighbor meta-
bolites through different reactions, MetDNA only recognizes
reaction-paired neighbor metabolites having similar MS/MS
spectra with L-arginine, such as beta-alanyl-L-arginine (DP: 0.96),
N(omega)-hydroxyarginine (DP: 0.99) and N-(L-arginino)succi-
nate (DP: 0.81). On the other hand, metabolites without similar
MS/MS spectra with L-arginine cannot be annotated, such as
agmatine (DP: 0.35), L-tyrosyl-L-arginine (DP: 0.23), and guani-
dine (DP: 0.28). Interestingly, the presence of L-arginine-deriva-
tives without similar MS/MS spectra does not seem to affect the
annotation of spectrally similar neighbor metabolites as well as
recursive rounds. In addition, one node metabolite may have
many neighbor metabolites in different metabolic reactions. If
one of many neighbor metabolites has the similar MS2 spectrum
as the node metabolite, it is enough to annotate this node
metabolite. So even ~45% of the reaction-paired metabolites have
DP score smaller than 0.5, the fact does not mean that all these
metabolites could not be captured by MetDNA. It is worthy to
note that low similarity between metabolites in non-RPs could
effectively cease the propagation of wrong annotation in MRN-
based recursive strategy (Fig. 4f). Collectively, high spectral
similarity between reaction-paired neighbor metabolites ensures
the high accuracy of annotation, while the reiterated application
of this surrogate principle through our recursive algorithm allows
significant and progressive expansion of annotated metabolites.

The comparison of spectral similarity between metabolites in
RPs and non-RPs and the low propagation results of mis-
annotated metabolites demonstrated that the false spectral simi-
larity between metabolites in non-RPs, but not in RPs, causes the
false positive annotations. Since the cosine similarities between
metabolites in non-RPs remained around 5.0% (Supplementary
Fig. 1), we reason that the false-positive annotation is not related
to the reaction steps. Meanwhile, the spectral similarity between
metabolites in RPs determined the capability and coverage to
annotate the neighbor metabolites within one or multiple reaction
steps. Clearly, the cosine similarities significantly decay along the

increasing reaction steps between metabolites in RPs. This evi-
dence implied that the challenge for annotation of metabolites
becomes increased with multiple reaction steps. However, if two
reaction-paired metabolites are spectrally similar, it can be
annotated by MetDNA regardless of their reaction steps (either
one or multiple). In MetDNA, we set up to three reaction steps
for the search for neighbor metabolites.

Recently, some publications utilized the molecular or reaction
network for metabolite annotation, such as GNPS-NAP20 and
BioCAn21. The core concept of GNPS-NAP tool was to connect
experimental metabolic features in a molecular network accord-
ing to their MS2 spectral similarity. Then, the authors hypothe-
sized that the neighbor features with similar MS2 spectra tended
to share the similar chemical structures. This hypothesis was used
to improve the annotation accuracy of peaks which were first
annotated by in silico predicted MS2 spectra. In principle, the
NAP work employed the spectral similarity of neighbor features
(instead of reaction-paired neighbor metabolites in MetDNA) to
re-rank the annotations obtained from in silico predicted
MS2 spectra. Finally, no recursive annotation was employed in
NAP which limited the effective coverage. For BioCAn, it first
constructed a network using reaction information. Then, the
metabolites in the network were mapped to the MS1 peak table
using the m/z match, and generated a small size network. Then,
the experimental MS2 spectra for matched features were further
matched to different MS2 spectral databases and in silico MS2
prediction tools to calculate node score. Then, the authors
hypothesized that one annotated node with more reliable
neighbor metabolites is more accurate. So the annotation score
was calculated to sum all node scores from the metabolites and
their neighbor metabolites. Similar to the GNPS-NAP, BioCAn
intended to re-rank the annotations obtained from the
MS2 spectral databases and in silico MS2 prediction tools.
However, no spectral similarity between reaction-paired neighbor
metabolites was utilized. Similar to GNPS-NAP, there was also no
recursive annotation in BioCAn. Therefore, we think the concepts
of NAP and BioCAn are very different from our MetDNA. In
addition, the reason why GNPS does not use the metabolic
reaction network is that it focuses on natural products and is
highlighted by annotating new chemical structures. MetDNA,
however, mainly focuses on the annotation of known metabolites
for primary metabolisms. It is well known that KEGG database
includes very limited numbers of natural products and lipids.
Thus MetDNA is not applicable for natural product annotation
or untargeted lipidomics where the metabolic pathways and
reactions are not well defined.

In MetDNA, the KEGG is used to construct MRN, because
KEGG is the most important and popular database in biology,
and is one of the most curated databases for metabolomics. In
KEGG, the substrate–product metabolite pairs in a metabolic
reaction were manually curated and validated for each reaction,
which makes them highly reliable32. In this work, we chose the
KEGG database for MetDNA due to its reliable definition of
reaction pairs and neighbor metabolites32. A total of 6439
metabolites from KEGG that were defined in reaction pairs were
retrieved for MRN, which is a relatively small number compared
to other databases. But we think it is large enough to demonstrate
the improved identification accuracy provided by MetDNA. For
example, the 917 dysregulated peaks in Drosophila aging datasets
were chosen for annotation using the metabolites in MRN. As a
result, the average number of annotation given by MetDNA for
917 dysregulated peaks is only 1.6. This number means that one
peak has only 1.6 metabolite candidates on average. As a com-
parison, the annotation redundancy is 16.1 when only using m/z
and predicted RT match (the redundancy is 34.4 when only using
m/z match, see Supplementary Note 8 and Supplementary
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Data 8). Taken together, these results demonstrated that
MetDNA significantly increases the number of annotated meta-
bolites, while effectively reducing the redundancy thereby
improving the accuracy of annotation. The high correct rate of
annotation using MetDNA can be demonstrated even with a
relatively small chemical space such as KEGG. In the future, other
expanded biochemical reaction databases such as SMPDB33,
MetaCyc34, and Reactome35 could also be considered to further
expand the coverage of MetDNA. For example, Blazenovic et al.29

have recently reported to annotated all MS/MS spectra obtained
from urine samples in untargeted metabolomics through multiple
methods and very large chemical search spaces including 1102
authentic standards, MoNA and NIST17 libraries (13,808 com-
pounds), CarniBlast library (2400 acylcarnitine species), CSI:
FingerID (a filtered version of Pubchem containing
270,000 structures), and NIST17 hybrid search. Using CSI:Fin-
gerID alone, the authors demonstrated that 728 out of 6447 MS/
MS spectra (11.3%) were assigned to chemical structures.
Therefore, although about 2000 metabolites can cumulatively be
annotated from one experiment with a relatively small chemical
search space in MetDNA, expanding the chemical spaces in
MetDNA and combined with other tools in the future could
effectively increase the number of annotated metabolites.

We compared four different scoring methods to evaluate
MS2 spectral similarity between metabolites in RPs and non-RPs,
namely, DP23, bonanza24, HSS25, and GNPS26 scores (Supple-
mentary Note 1). The results indicated that the use of GNPS and
HSS scores will facilitate to increase the annotated metabolite
numbers in MetDNA. However, it may also subsequently increase
the false positives given the fact that the spectral similarity scores
between metabolites in non-RPs become increased (5.2% using
DP vs.10.4% using GNPS and 10.2% using HSS, see Supple-
mentary Fig. 1). On the contrary, the use of bonanza score may
have an inverse effect (i.e., lower annotation numbers and false-
positive rate, Supplementary Fig. 1). For MetDNA, we think the
DP score is suitable for connecting the nodes defined in MRN.
Other scores such as GNPS and HSS should be very useful to
annotate new chemical structures for natural products and lipids.
To incorporate the other scores into MetDNA, the systematic
optimizations of score cut-off and evaluation of the validation
results must be required.

Finally, metabolomics data acquired using mass spectrometry
are very challenging to result in an absolutely unambiguous
structure. Current MS instruments cannot differentiate stereo-
isomers or highly similar isomers (such as adenosine 5'-mono-
phosphate vs. adenosine-3'-monophosphate) since they share the
same m/z, RT, and MS2 spectra. As a consequence, one peak is
commonly annotated with several possible metabolite candidates
in untargeted metabolomics (or called annotation redundancy).
MetDNA outputs the top five ranked annotation candidates with
match scores higher than 0.4, which is similar to other common
tools (e.g., XCMS-Online [https://xcmsonline.scripps.edu/], and
Sirius [https://bio.informatik.uni-jena.de/software/sirius/]). In
MetDNA, each annotation is also assigned with a level of con-
fidence, and redundant annotations are removed using the level
of confidence through a multi-step and recursive strategy. How-
ever, MetDNA cannot exceed the limit of mass spectrometry or
replace the chemical standards that ultimately confirm the
unambiguous annotation of metabolites28.

Methods
Metabolic reaction network. The metabolic reaction network is a network for
metabolite-to-metabolite-based enzymatic reactions, and it was constructed using
the KEGG database. The KEGG compound database was downloaded using an R
package KEGGREST in Bioconductor on 7 March 2017. We have provided this
version of KEGG compound database as an R file named as kegg.compound in

Supplementary Data 9. In one metabolic reaction, the substrate and product
metabolites are paired according to their structural similarity, and defined as one
reaction pair (or reactant pair, RP). The KEGG reaction pair database was ori-
ginally defined as RPAIR in KEGG32. This database was also obtained using the R
package KEGGREST on 7 March 2017. We have also provided this version of
KEGG reaction pair database as an R file named as kegg.rpair in Supplementary
Data 10. We did not filter any reaction pairs from the KEGG reaction pair data-
base, and all of reaction pairs were directly imported into R package igraph [https://
igraph.org/r/] to construct the MRN. In the MRN, one node represents one
metabolite, and one edge represents one reaction pair. Two metabolites connected
by one edge indicate that they are reaction-paired neighbor metabolites. Finally, the
MRN contains 7639 formulas (nodes) and 9603 reaction pairs (edges) in total.
However, 1200 out of 7639 formulas were not organic molecules or the metabolites
with a strict chemical structure, so the chemical space for MetDNA is 6439
metabolites in total. Detailed information of all the reaction pairs in the MRN is
provided in Supplementary Data 11 and Supplementary Data 10.

Data import. MetDNA requires the import of an MS1 peak table (.csv format) and
MS2 data files (.mgf or .msp format). The MS1 peak table is a list of metabolic
peaks with annotated m/z and RTs. The MS1 peak table is generated from the raw
MS files using common peak picking software such as XCMS27 and MS-DIAL36.
MS2 data files (.mgf format) are converted from MS raw files using ProteoWizard
[http://proteowizard.sourceforge.net/] (version 3.0.6150). MS2 data from different
data acquisition methods such as DDA, DIA, or targeted MS2 acquisition are all
supported. If MS-DIAL is used for peak picking in DIA data, the generated MS2
data files (.msp format) are also supported by MetDNA. The details and examples
about the generation of the MS1 peak table and MS2 data files are provided in
Supplementary Note 7.

Annotation of initial seed metabolites. With the imported MS1 peak table and
MS2 data, MetDNA first matches the MS1 peaks with MS2 spectra according to
their m/z (±25 ppm) and RT (±10 s) values. If one MS1 peak matches multiple
MS2 spectra, the most abundant MS2 spectrum is selected. In MetDNA, the
intensities of the top 10 abundant fragment ions are summed up to represent the
abundance of MS2 spectra. If one uses MS-DIAL for the peak picking and out-
putting MS2 data (.msp format), then the MS1–MS2 match step is skipped by
MetDNA. The generated MS1/MS2 pairs are matched with our in-house standard
spectral library for metabolite annotation. The match tolerance for the MS1 m/z
value is set as ±25 ppm. We compared four different scoring methods to evaluate
MS2 spectra similarity (see Supplementary Note 1), and found that DP score is an
appropriate one. So the modified DP function23 is used to score the similarity
between the experimental spectrum and the standard spectrum in the library
(Eq. 1). The DP score ranges from 0 to 1, from no match to a perfect match. The
intensities of the fragment ions in the MS2 spectra are rescaled so that the highest
fragment ion is set to 1.

Dot product ¼
P

WSWEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
W2

SW
2
E

p ; ð1Þ

where weighted intensity vector, W= [relative intensity of fragment ion]n[m/z
value]m, n= 1, m= 0; S= standard, and E= experiment. DP scores from both
forward and reverse matches are generated. Metabolite annotations with DP scores
in either forward or reverse matches larger than 0.8 are kept. Usually, 50–200
metabolites are annotated using the standard spectral library. The annotations are
further filtered using the theoretical RTs of the metabolites (±30%). The generation
of the theoretical RTs is provided below. The remaining annotations are used as
initial seed metabolites in round 0 for MRN-based recursive annotation. The seed
metabolites are defined as the annotated metabolites that provide their MS2 spectra
as surrogate MS2 spectra for the annotation of their reaction-paired neighbor
metabolites.

Annotation of isotope and adduct peaks. First, the isotope peaks of seed
metabolites are annotated by MetDNA (Supplementary Fig. 2). For each seed
metabolite, the program calculates the theoretical m/z and the relative intensities
of isotope peaks from the formula using the binomial and McLaurin expansion
(R package Rdisop). Only four isotope peaks ([M] to [M+4]) are calculated. The
generated isotope peaks of seed metabolites are used to match all the MS1 peaks
in the MS1 peak table according to the m/z, RT and relative intensity. The
default tolerances for the m/z, RT, and relative intensity are set as ±25 ppm, ±3 s,
and ±500%, respectively. The large tolerance for the relative intensity match is
due to the inaccuracy of the experimental intensity ratios for the isotope
peaks37,38.

The matched isotope peaks are assigned the annotation scores (Scoreiso) shown
below:

Scoreiso¼ Scorem=zWm=z þ ScoreRTWRT þ ScoreintW int; ð2Þ
where Scorem/z represents the m/z match score and is calculated as follows:

Scorem=z¼1� mzE �mzTð Þ ´ 106=mzTj jð Þ
Tolerancem=z

; ð3Þ
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mzE and mzT are the experimental m/z and theoretical m/z, respectively. The
Tolerancem/z represents the tolerance for the m/z match with a default value of
25 ppm.

ScoreRT represents the RT match score and is calculated as follows:

ScoreRT ¼ 1� RTE � RTTj jð Þ
ToleranceRT

; ð4Þ

where RTE and RTT are the experimental RT and theoretical RT, respectively. The
ToleranceRT represents the tolerance of RT match with a default value of 3 seconds.

Scoreint represents the relative intensity match score and is calculated as follows:

Scoreint¼1� IntE � IntTð Þ ´ 100=IntTj jð Þ
Toleranceint

; ð5Þ

IntE and IntT are the experimental relative intensity and theoretical relative
intensity, respectively. The Toleranceint represents the relative intensity match
tolerance with a default value of 500%. Wm/z, WRT, and Wint represent the weights
of Scorem/z, ScoreRT, and Scoreint, respectively, and the default values are 0.45, 0.45,
and 0.1, respectively.

Second, MetDNA calculates the possible m/z values for the adduct peaks of seed
metabolites. The adduct table for different LC separations (HILIC or RP) and
polarities (positive and negative) are listed in Supplementary Table 5. All the
possible adduct peaks of the seed metabolites are then matched to the MS1 peak
table according to their m/z and RT. The default tolerances for the m/z and RT are
± 25 ppm and ±3 s, respectively. The annotations of the adduct peaks are also
assigned annotation scores (Scoreadduct) as follows:

Scoreadduct¼ Scorem=zWm=z þ ScoreRTWRT; ð6Þ
where Scorem/z represents the m/z match score and is calculated as indicated in
Eq. (3). ScoreRT represents the RT match score and is calculated using Eq. (4).Wm/z

and WRT represent the weights of Scorem/z and ScoreRT, respectively, and the
default values are 0.8 and 0.2, respectively.

Third, after the annotation of the adduct peak, the isotope peak annotation for
each adduct peak is also performed using the same procedures described above.

The annotation of in-source fragmentation is not included in MetDNA. But
some in-source fragmentations can be well differentiated using the RT. For
example, RTs for tryptamine and tryptophan are 325.1 and 446.7 s, respectively,
which generate an RT error of 37.2%. In MetDNA, true tryptamine and tryptamine
from the in-source fragmentation can be well differentiated using the RTs.

Annotation of reaction-paired neighbor metabolites. Two metabolites in one
reaction pair are neighbor metabolites. The seed metabolites provide their
experimental MS2 spectra as surrogate spectra to annotate their neighbor meta-
bolites. First, the initial seed metabolites are mapped to MRN and retrieve their
neighbor metabolites from MRN. The reaction step is defined as the number of
reactions between two metabolites. All the neighbor metabolites with one reaction
step are retrieved. The MS2 spectra of the seed metabolites are assigned to their
corresponding neighbor metabolites as surrogate MS2 spectra. The precursor m/z
was calculated for the neighbor metabolites according to the possible adduct (such
as [M+H]+ or [M+Na]+) in the LC condition (HILIC or RP) and ionization
polarity. In addition, RTs for the neighbor metabolites were also predicted. For
each neighbor metabolite, the generated theoretical m/z, predicted RT (from RT
prediction), and surrogate MS2 spectrum are matched to the experimental MS1
m/z (default tolerance: ±25 ppm), RT (default tolerance: ±30%), and MS2 spectrum
(default tolerance: 0.5). If one seed metabolite leads to no annotation of a neighbor
metabolite with one reaction step, then neighbor metabolites with two reaction
steps are further retrieved. The default value of the maximum reaction step is 3.
The annotations of neighbor metabolites are assigned the annotation scores shown
below:

Scoreiden¼ Scorem=zWm=z þ ScoreRTWRT þ ScorespecWspec; ð7Þ
where Scorem/z, Wm/z, and WRT are the same as in Eq. (2). ScoreRT is calculated as
follows:

ScoreRT¼1� RTE � RTTð Þ´ 100=RTTj jð Þ
ToleranceRT

; ð8Þ

where RTE and RTT are the experimental RT and theoretical RT, respectively. The
ToleranceRT represents the tolerance of RT match with a default value of 30%.

Scorespec is the MS2 spectral match score, which is scored using a dot-product
function (Eq. (1)) with some modifications. If the m/z value of seed metabolite is
larger than the neighbor metabolite, the fragment ions in the surrogate MS2
spectrum with m/z larger than that of the neighbor metabolite are removed. Vice
versa, the fragment ions in the experimental MS2 spectrum with m/z larger than
that of seed metabolite are also removed. Wspec is the weight of Scorespec. The
default values of Wm/z, WRT, and Wspec are 0.25, 0.25, and 0.5, respectively. The
annotations of each MS1 peak are ranked by Scoreiden. After the annotation of
neighbor metabolites, isotope peak annotation is also performed for each neighbor
metabolite using the same procedures described above.

Selection of seed metabolites and recursive annotation. After one round of
annotation, new seed metabolites are selected from the annotated neighbor
metabolites to start recursive annotation (Fig. 1c). Peaks with new annotations are
selected as seed metabolites. MetDNA then repeats the neighbor metabolite
identification and isotope peak annotation until there are no new seed metabolites
available for the next round of annotation.

Confidence assignment. MetDNA uses a multi-step strategy to evaluate the
confidence of the metabolite annotation. First, all the annotated MS1 peaks are
grouped according to their annotation and RT. The MS1 peaks with the same
metabolite annotations are grouped together and further divided into different
peak groups according to their RT. The peak group is defined as a set of peaks (e.g.,
monoisotope peak, isotope peaks, and adduct peaks) with the same annotation and
in the same RT window (default is 3 s). If one peak has multiple annotations, it may
belong to multiple peak groups. Similarly, one metabolite may also belong to
multiple peak groups. The confidence is then assigned to each peak group and all
MS1 peaks in the group according to the following rules:

(1) Grade 1: at least one MS1 peak in the peak group is annotated through the
standard spectral library (or initial seed metabolite);

(2) Grade 2: do not meet rule 1, and there are isotope peaks available in the peak
group;

(3) Grade 3: do not meet rules 1 and 2, and there are reliable adduct peaks in the
peak group, such as [M+H]+, [M+Na]+ or [M+NH4]+ for positive mode,
and [M-H]−, [M+Cl]−, or [M+CH3COO]− for negative mode, respectively;
and

(4) Grade 4: the remaining peak groups that do not meet rules 1, 2, or 3.

Redundancy removal. Annotation redundancy includes peak redundancy and
metabolite redundancy. Peak redundancy is defined as the total number of meta-
bolite annotations divided by the total number of peaks with annotations, that is,
the number of metabolites per peak. By contrast, the metabolite redundancy is
defined as the total number of peak groups with annotation divided by the total
number of metabolite annotations, that is, the number of peak groups per meta-
bolite. MetDNA then removes the annotation redundancy according to the con-
fidence levels of the peak group and the peaks in the group. First, if one metabolite
matches multiple peak groups, the program removes the annotation from all the
peaks in the peak groups with grade 4. However, if all of the matched peak groups
are grade 4, all the annotations are maintained. Second, if one peak matches
multiple metabolites, the annotations with the highest grade are kept. After the
removal of the annotation redundancy, the constitution of the peak groups may
change. The confidence assignment is then repeated, followed by a repetition of the
redundancy removal process, which is also a recursive process. The recursive
process continues until the annotation redundancy remains unchanged. The
annotation redundancy is calculated as the mean value of the peak redundancy and
the metabolite redundancy.

Identification of dysregulated pathways. A pathway enrichment analysis is used
to identify and characterize the dysregulated metabolic pathways. First, dysregu-
lated peaks with annotations are selected according to a univariate test (Student’s t-
test or Mann–Whitney–Wilcoxon test) with or without FDR correction. The
maximum tolerance of P values can be set by the users. A volcano plot is provided
to demonstrate the distributions of the dysregulated peaks. Second, the metabolite
annotations from the dysregulated peaks are mapped to the KEGG metabolic
pathways. Currently, MetDNA contains the pathway information for 16 biological
species (Supplementary Data 12). The hypergeometric test is used to evaluate
whether the dysregulated metabolites are enriched in one pathway39. The P value
from the hypergeometric test is also calculated for each pathway. The dysregulated
pathways with P values less than 0.05 are output as dysregulated pathways. The
information for dysregulated pathways is output into the file named Pathway.
enrichment.analysis.

Quantitative analysis of dysregulated pathway. MetDNA utilizes the quanti-
tative information from the MS1 peaks to characterize the expression levels of the
dysregulated pathways in a quantitative fashion. First, all the peak intensities are
Pareto-scaled. If one peak group has multiple MS1 peaks, then the most abundant
peak is selected to represent the quantity of the peak group. Second, if one
metabolite matches multiple peaks, then the peak with the highest annotation score
(Scoreiden) is selected to represent the metabolite. Third, the expression level of
one dysregulated pathway is calculated as the average value of all the metabolites in
the pathway. The quantitative results for the metabolites and pathways are output
into two files named Quantitative.pathway.metabolite.result and Quantitative.
pathway.result, respectively.

Predicting the RT. To obtain the theoretical RTs of all the metabolites in the
MRN, MetDNA utilizes the quantitative structure–retention relationship (QSRR)
to construct a prediction model to generate theoretical RTs40,41. The RTs of
metabolites under liquid chromatography (LC) highly depend on their structures
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and physiochemical properties, which can be described quantitatively using
molecular descriptors (MDs). With the QSRR prediction model, the input of a set
of MD values for one metabolite could generate the theoretical RT. This approach
requires the following data to establish a prediction model: (1) a training dataset
containing a number of metabolites with experimental RTs; (2) a machine-
learning-based algorithm; and (3) the MDs of metabolites. The detailed steps for
the RT prediction are described below.

Step 1. Calculating the MDs. The R package rcdk [https://cran.r-project.org/
web/packages/rcdk/index.html] is used to calculate the MDs of the metabolites
from their SMILES structures. The SMILESs of metabolites from the in-house
spectral library and the MRN were obtained using the Identifier Exchange Service
of PubChem [https://pubchemdocs.ncbi.nlm.nih.gov/identifier-exchange-service].
A total of 346 MDs are calculated for each metabolite.

Step 2. Obtain a training dataset. The annotated metabolites through the
spectral match are used as the training dataset to establish the prediction model. If
one MS1 peak has multiple metabolite annotations, or vice versa, then the unique
metabolite annotation is selected using the following criteria: (1) if one MS1 peak
has multiple annotations, the one with the highest DP score is kept; (2) if one
metabolite matched to multiple MS1 peaks, then the one with the highest intensity
is kept; and (3) metabolite annotations with reliable adducts, such as [M+H]+,
[M+Na]+, and [M+NH4]+ in positive ionization and [M-H]−, [M+CH3COO]−,
and [M+Cl]− in negative ionization are selected. For the metabolites in the
training dataset, MDs with more than 50% missing values (MVs) across all
metabolites are removed. The remaining MVs in the training dataset are imputed
using the KNN algorithm (with the R package impute). The MDs with the same
values across all the metabolites are also removed. As a result, a training dataset is
obtained, including a set of metabolites with experimental RTs, and the MDs for
the metabolites are calculated.

Step 3. Optimize the combination of MDs for prediction. A machine-learning-
based algorithm known as the random forest (RF) is used to develop the prediction
model. First, the combination of MDs is optimized for prediction. An RF model is
constructed using MDs as independent variables and RTs as dependent variables
(with the R package randomForest). Approximately 68% of the metabolites are
randomly selected as the internal training dataset, and the remaining metabolites
are used as the internal test dataset. An importance value is assigned to each MD to
evaluate its contribution to the prediction model. The model construction is
repeated 100 times. Each time, the top five ranked MDs according to the
importance values are recorded. The MDs that appear > 50 times in 100 RF models
are selected as the optimized MD combination. Using the datasets in our lab, we
optimized two combinations of MDs for HILIC and reverse phase (RP)
separations, respectively. The optimized combination of MDs for the HILIC
includes XLogP, tpsaEfficiency, WTPT.5, khs.dsCH, MLogP, nAcid, nBase, and
BCUTp.1l. The optimized combination of MDs for the RP phase includes XLogP,
WTPT.5, WTPT.4, ALogp2, and BCUTp.1l.

Step 4. Parameter optimization. The parameters in the RF algorithm, ntree (i.e.,
number of trees to grow) and mtry (i.e., number of variables randomly sampled as
candidates at each split) are also optimized. The two parameters are combined
together to form a set of parameter combinations. The performance of each
parameter combination is evaluated using the mean squared error (MSE). The
parameter combination with the smallest MSE is used to construct the final
prediction model.

Step 5. Retention time prediction. With the RF-based prediction model, the
theoretical RTs of all the metabolites in the spectral library and MRN are obtained
using their calculated MDs. The theoretical RTs are used to improve the confidence
in the metabolite annotations.

Standard MS2 spectral library. The standard MS2 spectral library is used to
annotate the initial seed metabolites in MetDNA. The curation of the library
followed the protocol in our previous publication22. All the MS2 spectra were
acquired on Sciex TripleTOF 5600 or 6600 instruments with commercial meta-
bolite standards. For each metabolite, the targeted product ion scans were applied
to acquire the MS2 spectrum with a flow injection method. The curation of the
spectral library follows the instructions and protocols in a publication from the
NIST to improve spectral reproducibility42. In brief, for each metabolite, at least 11
MS2 spectra were acquired. The cluster of MS2 spectra with high similarities (DP >
0.7) was selected to generate a consensus MS2 spectrum. MS2 spectra at different
levels of collision energy (10, 20, 30, 40, and 35 ±15 eV) were acquired. The current
library in MetDNA contains 841 metabolites in total, with 841 for the positive
mode and 837 for the negative mode (Supplementary Data 13).

Reagents, fruit fly culture, and sample preparation. LC-MS grade water (H2O)
and methanol (MeOH) were purchased from Honeywell (Muskegon, USA). LC-
MS grade acetonitrile (ACN) was purchased from Merck (Darmstadt, Germany).
Ethanol was purchased from Sinopharm (Beijing, China). Ammonium hydroxide
(NH4OH) and ammonium acetate (NH4OAc) were purchased from Sigma-Aldrich
(St. Louis, USA). Metabolite chemical standards were purchased from J&K (Beijing,
China), Sigma (St. Louis, USA), Carbosynth (Berkshire, UK), TCI (Tokyo, Japan)
and Energy Chemical (Shanghai, China).

Wild-type male fruit flies (FlyBase ID: FBst0005905) were cultured in standard
media (temperature, 25 °C; humidity, 60%; and a 12 h light and 12 h dark cycle). At

day 3 (3-day) and day 30 (30-day), 100 fruit flies were collected and divided into
10 samples (10 flies in each sample, n= 10 in each group, and 20 samples in total).
The fruit flies were killed with 75% ethanol. The heads of the fruit flies were
collected and placed into microcentrifuge tubes. The tubes were immediately
frozen with liquid nitrogen and stored at −80 °C until metabolite extraction. The
Drosophila aging samples were defrosted on ice. The Drosophila aging samples
were then homogenized with 200 μL of H2O and 20 ceramic beads (diameter, 0.1
mm) using a homogenizer (Precellys 24, Bertin Technologies). A mixture of ACN:
MeOH (1:1, v/v; 800 μL) was added to the samples, which were then vortexed for
30 s, followed by incubation in liquid nitrogen for 1 min, and then thawed on ice.
This vortex–freeze–thaw cycle was repeated three times. The samples were
incubated for 1 h at −20 °C for protein precipitation, followed by centrifugation at
16,200g and 4 °C for 15 min. The supernatant solution was removed and
evaporated to dryness in a vacuum concentrator (Labconco, USA). A mixture of
ACN:H2O (1:1, v/v; 100 µL) was then added to reconstitute the dry extracts,
followed by sonication (50 Hz, 4 °C) for 10 min. The solutions were centrifuged at
16,200g and 4 °C for 5 min to precipitate the insoluble debris. Finally, the
supernatant solutions were transferred to HPLC glass vials and stored at −80 °C
prior to LC-MS/MS analysis.

LC-MS/MS analysis of Drosophila aging samples. The metabolomics data
acquisition for Drosophila aging samples was performed using a UHPLC system
(1290 series; Agilent Technologies, USA) coupled to a quadruple time-of-flight
mass spectrometer (TripleTOF 6600, AB SCIEX, USA). A Waters ACQUITY
UPLC BEH Amide column (particle size, 1.7 μm; 100 mm (length) × 2.1 mm (i.d.))
was used for the LC separation and the column temperature was kept at 25 °C.
Mobile phase A was 25 mM ammonium hydroxide (NH4OH)+ 25 mM ammo-
nium acetate (NH4OAc) in water, and B was ACN for both the positive (ESI+) and
negative (ESI−) modes. The flow rate was 0.3 mL/min and the gradient was set as
follows: 0–1 min: 95% B, 1–14 min: 95% B to 65% B, 14–16 min: 65% B to 40% B,
16–18 min: 40% B, 18–18.1 min: 40% B to 95% B, and 18.1–23 min: 95% B. The
injection volume was 2 μL. All the samples were randomly injected during data
acquisition.

The data acquisition was operated using the information-dependent acquisition
(IDA) mode. The source parameters were set as follows: ion source gas 1 (GAS1),
60 psi; ion source gas 2 (GAS2), 60 psi; curtain gas (CUR), 30 psi; temperature
(TEM), 600 °C; declustering potential (DP), 60 V, or −60 V in positive or negative
modes, respectively; and ion spray voltage floating (ISVF), 5500 or −4000 V in
positive or negative modes, respectively. The TOF MS scan parameters were set as
follows: mass range, 60–1200 Da; accumulation time, 200 ms; and dynamic
background subtract, on. The product ion scan parameters were set as follows:
mass range, 25–1200 Da; accumulation time, 50 ms; collision energy, 30 or −30 V
in positive or negative modes, respectively; collision energy spread, 0; resolution,
UNIT; charge state, 1 to 1; intensity, 100 cps; exclude isotopes within 4 Da; mass
tolerance, 10 ppm; maximum number of candidate ions to monitor per cycle, 6;
and exclude former target ions, for 4 s after two occurrences.

Data processing of the Drosophila aging dataset. All 20 MS raw data files (.wiff)
were separately converted to mzXML format and mgf format using ProteoWizard.
The detailed parameters for the data conversion are listed in Supplementary
Table 6. First, the mzXML data files were grouped into two folders (named W03
and W30) and subjected to peak detection and alignment using the R package
called xcms (version 1.46.0 [https://bioconductor.org/packages/3.2/bioc/html/
xcms.html]). The detailed code for XCMS processing is provided in Supplementary
Note 7. The key parameters were set as follows: method= “centWave”; ppm= 15;
snthr= 10; peakwidth= c(5, 40); minifrac= 0.5. The generated MS1 peak table
includes the mass-to-charge ratio (m/z), RT, peak abundances, and other infor-
mation. The peak table was then modified as follows: (1) for the first 12 columns,
those named name, mzmed and rtmed were kept, and the others were deleted; (2)
the first three columns were renamed name, mz and rt. The generated MS1 peak
tables (one for positive mode and one for negative mode) are used for the MetDNA
analysis.

Second, a sample information file (.csv format) is prepared to describe the
sample group information. The first column is named sample.name, while the
second one is named group. Two group names (W03 and W30) are provided.

Finally, the MS1 peak table, sample information file, and MS2 data files (.mgf
format) were all uploaded to our MetDNA webserver [http://metdna.zhulab.cn] for
data analysis. Positive and negative datasets were processed together. The data
processing parameters for MetDNA were set as follows: Ionization polarity, Both;
Liquid Chromatography, HILIC; MS Instrument, Sciex TripleTOF; Collision
Energy, 30; Control Group, W03; Case Group, W30; Univariate Statistics, Student’s
t-test; Species, Drosophila melanogaster (fruit fly); Cutoff of P value, 0.01; and
P value Adjustment, Yes. The detailed code for XCMS processing and parameter
settings for MetDNA is provided in Supplementary Note 7.

Transcriptomics data for the Drosophila aging samples. The RNA-seq of the
Drosophila aging head tissues (3-day vs. 30-day, n= 3 for each group) was obtained
from our recent study30 and downloaded from the Gene Expression Omnibus
[https://www.ncbi.nlm.nih.gov/geo/] (GEO: GSE96654). In brief, the head tissue
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samples of the fruit flies were sequenced using Illumina NextSeq 550 or Hisep 2500
platforms with single end 100 bps. The sequencing reads were mapped to the
reference genome dm6 with STAR2.3.0. The read counts for each gene were cal-
culated using HTSep-0.5.4. The count files were normalized with the R package
DESeq. Finally, the FlyDatabase ID for each gene was transformed to KEGG ID
with the R package clusterProfiler. The genes without mapped KEGG IDs were
removed from the dataset. The final transcriptomics dataset of aging fruit flies is
provided in Supplementary Data 14.

Other metabolomics datasets. In this study, a total of 11 datasets were used to
evaluate the performance of MetDNA. The detailed information of dataset #2–11
(Supplementary Tables 2 and 3) are provided in Supplementary Note 3. The
patients in dataset #10 were enrolled with the written informed consents and this
study was approved by the Ethics Committee of the Tumor Hospital of Harbin
Medical University (Harbin, China). The patients in dataset #11 were also enrolled
with the written informed consents and this study was approved by the Ethics
Committee of the Shandong Tumor Hospital (Jinan, China). The animal studies
were approved by Animal Ethics and Welfare Management Committee of Inter-
disciplinary Research Center on Biology and Chemistry, Chinese Academy of
Sciences (Shanghai, China).

Multi-omics integration of metabolomics and transcriptomics. A correlation
network between the metabolomics and transcriptomics was constructed. To
construct the correlation network at the pathway level, we first obtained quanti-
tative pathway data from the metabolomics data (see Quantitative analysis of
dysregulated pathway). For the transcriptomics data, the same method was applied.
In brief, genes in the same pathway were grouped, and the mean value of the genes
was then taken for each pathway to represent the quantitative information of this
pathway. For pathways in the metabolomics and transcriptomics data, all the
pairwise Pearson correlations were calculated to construct the correlation network
at the pathway level for both types of data (Student’s t-test, P values < 0.05, only the
same pathways in both types of data). The correlation network at the gene and
metabolite level for each pathway was also constructed using the same method with
a Pearson correlation (Student’s t-test, P values < 0.01 and absolute Pearson cor-
relation values > 0.7). The network was visualized using Cytoscape [http://www.
cytoscape.org/] (version 3.2.1).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
MetDNA was developed using a mixture of R, JavaScript, and Python and is available for
non-commercial use at http://metdna.zhulab.cn/. The webserver is currently hosted on a
Linux server from Alibaba Cloud [https://www.alibabacloud.com/] with 16 cores (3.2
GHz CPU) and 32;GB RAM. The web-based software tool is easy to use for common
users with limited bioinformatic background, and compatible with multiple operation
systems (such as Windows, Linux, and Mac OS). With this configuration, the analysis for
the Drosophila aging datasets (both positive and negative modes, 20 samples in total,
dataset #1 in Supplementary Table 2) took about 2 h. The source code of MetDNA can be
found and downloaded for scientific research purpose from the github via https://github.
com/ZhuMSLab/MetDNA. A help document for using MetDNA can be found at http://
metdna.zhulab.cn/metdna/help. The demo data are provided to learn how to use
MetDNA at http://metdna.zhulab.cn/metdna/DemoDataset.

Data availability
All the metabolomics datasets described in our study can be downloaded from the
MetDNA website [http://metdna.zhulab.cn/metdna/DatasetsDownload] (see details in
Supplementary Table 2). The metabolomics datasets of Drosophila aging (dataset #1) can
also be accessed at MetaboLights [https://www.ebi.ac.uk/metabolights/index] (Project ID:
MTBLS612 for positive and MTBLS615 for negative modes, respectively). The
metabolomics datasets of mouse liver tissues (dataset #2) can also be accessed at
MetaboLights [https://www.ebi.ac.uk/metabolights/index] (Project ID: MTBLS601 for
positive and MTBLS606 for negative modes, respectively). A reporting summary for this
article is available as a Supplementary Information file. All other data supporting the
findings of this study are available from the corresponding author on reasonable request.
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