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Agingis acomplex process associated with nearly all diseases. Understanding
the molecular changes underlying aging and identifying therapeutic targets

for aging-related diseases are crucial for increasing healthspan. Although
many studies have explored linear changes during aging, the prevalence

of aging-related diseases and mortality risk accelerates after specific time
points, indicating the importance of studying nonlinear molecular changes.
In this study, we performed comprehensive multi-omics profilingona
longitudinal human cohort of 108 participants, aged between 25 years and
75 years. The participants resided in California, United States, and were
tracked for amedian period of 1.7 years, with amaximum follow-up duration
of 6.8 years. The analysis revealed consistent nonlinear patterns in molecular
markers of aging, with substantial dysregulation occurring at two major
periods occurring at approximately 44 years and 60 years of chronological
age. Distinct molecules and functional pathways associated with these
periods were also identified, such asimmune regulation and carbohydrate
metabolism that shifted during the 60-year transition and cardiovascular
disease, lipid and alcohol metabolism changes at the 40-year transition.
Overall, this research demonstrates that functions and risks of aging-related
diseases change nonlinearly across the human lifespan and provides insights
into the molecular and biological pathways involved in these changes.

Agingisacomplexand multifactorial process of physiological changes
strongly associated with various human diseases, including cardiovas-
cular diseases (CVDs), diabetes, neurodegeneration and cancer'. The
alterations of molecules (including transcripts, proteins, metabolites
and cytokines) are critically important to understand the underlying
mechanism of aging and discover potential therapeutic targets for
aging-related diseases. Recently, the development of high-throughput
omicstechnologies has enabled researchersto study molecular changes
atthe systemlevel’. Agrowing number of studies have comprehensively
explored the molecular changes that occur during aging using omics
profiling®*, and most focus on linear changes’. It is widely recognized

thatthe occurrence of aging-related diseases does not follow a propor-
tional increase with age. Instead, the risk of these diseases accelerates
at specific points throughout the human lifespan®. For example, in the
United States, the prevalence of CVDs (encompassing atherosclerosis,
stroke and myocardial infarction) is approximately 40% between the
ages of 40 and 59, increases to about 75% between 60 and 79 and reaches
approximately 86% in individuals older than 80 years’. Similarly, also
in the United States, the prevalence of neurodegenerative diseases,
such asParkinson’s disease and Alzheimer’s disease, exhibits anupward
trend as well as human aging progresses, with distinct turning points
occurring around the ages of 40 and 65, respectively®'°. Some studies
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Fig.1|Most molecules and microbes undergo nonlinear changes during
human aging. a, The demographics of the 108 participants in the study are
presented. b, Sample collection and multi-omics data acquisition of the cohort.
Four types of biological samples were collected, and 10 types of omics data were
acquired. ¢, Collection time range and sample numbers for each participant. The
top x axis represents the collection range for each participant (read line), and the
bottom xaxis represents the sample number for each participant (bar plot). Bars
are color-coded by omics type. d, Significantly changed molecules and microbes
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during aging were detected using the Spearman correlation approach (P < 0.05).
The Pvalues were not adjusted (Methods). Dots are color-coded by omics type.
e, Differential expressional molecules/microbes in different age ranges
compared to baseline (25-40 years old, two-sided Wilcoxon test, P < 0.05).

The Pvalues were not adjusted (Methods). f, The linear changing molecules
comprised only asmall part of dysregulated moleculesin at least one age range.
g, Heatmap depicting the nonlinear changing molecules and microbes during
humanaging.

also found thatbrainaging followed an accelerated declinein flies” and
chimpanzees' that lived past middle age and advanced age.

The observation of a nonlinear increase in the prevalence of
aging-related diseases implies that the process of human agingis nota

simplelinear trend. Consequently, investigating the nonlinear changes
inmolecules willlikely reveal previously unreported molecular signa-
tures and mechanistic insights. Some studies examined the nonlinear
alterations of molecules during human aging®. For instance, nonlinear
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changesinRNA and protein expressionrelated to aging have been docu-
mented'* . Moreover, certain DNA methylation sites have exhibited
nonlinear changes in methylation intensity during aging, following a
power law pattern”. Liet al.”® identified the 30s and 50s as transitional
periods during women'’s aging. Although aging patterns are thought
to reflect the underlying biological mechanisms, the comprehensive
landscape of nonlinear changes of different types of molecules during
agingremains largely unexplored. Remarkably, the global monitoring
of nonlinear changing molecular profiles throughout humanaging has
yet to be fully used to extract basic insights into the biology of aging.

Inthe present study, we conducted acomprehensive deep multi-
omics profiling on alongitudinal human cohort comprising 108 indi-
viduals aged from 25 years to 75 years. The cohort was followed over a
span of several years (median, 1.7 years), with the longest monitoring
periodforasingle participant reaching 6.8 years (2,471 days). Various
types of omics data were collected from the participants’ biologi-
cal samples, including transcriptomics, proteomics, metabolomics,
cytokines, clinical laboratory tests, lipidomics, stool microbiome, skin
microbiome, oralmicrobiome and nasal microbiome. The investigation
explored the changes occurring across different omics profiles during
human aging. Remarkably, many molecular markers and biological
pathways exhibited a nonlinear patternthroughout the aging process,
thereby providing valuable insightinto periods of dramatic alterations
during human aging.

Results

Most of the molecules change nonlinearly during aging

We collected longitudinal biological samples from 108 participants
over several years, with a median tracking period of 1.7 years and a
maximum period of 6.8 years, and conducted multi-omics profiling
onthesamples. The participants were sampled every 3-6 months while
healthy and had diverse ethnic backgrounds and ages ranging from
25 years to 75 years (median, 55.7 years). The participants’ body mass
index (BMI) ranged from19.1 kg m2t040.8 kg m2(median, 28.2 kg m™).
Among the participants, 51.9% were female (Fig. 1aand Extended Data
Fig.1a-d).For each visit, we collected blood, stool, skin swab, oral swab
and nasal swab samples. In total, 5,405 biological samples (including
1,440blood samples, 926 stool samples, 1,116 skin swab samples, 1,001
oral swab samples and 922 nasal swab samples) were collected. The bio-
logical samples were used for multi-omics data acquisition (including
transcriptomics from peripheral blood mononuclear cells (PBMCs),
proteomics from plasma, metabolomics from plasma, cytokines from
plasma, clinical laboratory tests from plasma, lipidomics from plasma,
stool microbiome, skin microbiome, oral microbiome and nasal micro-
biome; Methods). Intotal, 135,239 biological features (including 10,346
transcripts, 302 proteins, 814 metabolites, 66 cytokines, 51 clinical
laboratory tests, 846 lipids, 52,460 gut microbiome taxons, 8,947 skin
microbiome taxons, 8,947 oral microbiome taxons and 52,460 nasal
microbiome taxons) were acquired, resultingin 246,507,456,400 data
points (Fig.1band Extended DataFig. 1e,f). The average sampling period
and number of samples for each participant were 626 days and 47 sam-
ples, respectively. Notably, one participant was deeply monitored for
6.8 years (2,471 days), during which 367 samples were collected (Fig. 1c).
Overall, this extensive and longitudinal multi-omics dataset enables us
to examine the molecular changes that occur during the human aging
process. The detailed characteristics of all participants are provided
inthe Supplementary Data. For each participant, the omics data were
aggregated and averaged across all healthy samples to represent the
individual’smeanvalue, as detailed in the Methods section. Compared to
cross-sectional cohorts, which have only a one-time point sample from
eachparticipant, our longitudinal dataset, which includes multiple time
point samples from each participant, ismore robust for detecting com-
plexaging-related changes in molecules and functions. Thisisbecause
analysis of multi-time point samples can detect participants’ baseline
and robustly evaluate individuals’ longitudinal molecular changes.

We included samples only from healthy visits and adjusted for
confounding factors (for example, BMI, sex, insulin resistance/insulin
sensitivity (IRIS) and ethnicity; Extended Data Fig.1a-d), allowing usto
discern the molecules and microbes genuinely associated with aging
(Methods). Two common and traditional approaches, linear regression
and Spearman correlation, were first used to identify the linear chang-
ing molecules during human aging’. The linear regression method
is commonly used for linear changing molecules. As expected, both
approaches have very high consistent results for each type of omics
data (Supplementary Fig. 1a). For convenience, the Spearman cor-
relation approach was used in the analysis. Interestingly, only a small
portion of allthe molecules and microbes (749 out 0f 11,305, 6.6%; only
genus level was used for microbiome data; Methods) linearly changed
duringhuman aging (Fig.1d and Supplementary Fig.1b), consistent with
our previous studies’ (Methods). Next, we examined nonlinear effects
by categorizing all participants into distinct age stages according to
theirages andinvestigated the dysregulated molecules withineach age
stage compared to the baseline (25-40 years old; Methods). Interest-
ingly, using this approach, 81.03% of molecules (9,106 out of 11,305)
exhibited changes in at least one age stage compared to the baseline
(Fig.leand Extended Data Fig. 2a). Remarkably, the percentage of linear
changing molecules was relatively small compared to the overall dys-
regulated molecules during aging (mean, 16.2%) (Fig. 1f and Extended
DataFig.2b). To corroborate our findings, we employed a permutation
approach to calculate permutated P values, which yielded consist-
ent results (Methods). The heatmap depicting all dysregulated mol-
eculesalsoclearlyillustrates pronounced nonlinear changes (Fig.1g).
Taken together, these findings strongly suggest that a substantial num-
ber of molecules and microbes undergo nonlinear changes throughout
human aging.

Clustering reveals nonlinear multi-omics changes during
aging

Next, we assessed whether the multi-omics data collected from the lon-
gitudinal cohort could serve as reliable indicators of the aging process.
Our analysis revealed a substantial correlation between a significant
proportion of the omics data and the ages of the participants (Fig.
2a). Particularly noteworthy was the observation that, among all the
omics data examined, metabolomics, cytokine and oral microbiome
datadisplayed the strongest association with age (Fig.2a and Extended
DataFig.3a-c).Partial least squares (PLS) regression was further used
to compare the strength of the age effect across different omics data
types. The results are consistent with the results presented above in
Fig.2a (Methods). These findings suggest the potential utility of these
datasets as indicators of the aging process while acknowledging that
further research is needed for validation®. As the omics data are not
accurately matched across allthe samples, we then smoothed the omics
datausing our previously published approach' (Methods and Supple-
mentary Fig. 2a-c). Next, to reveal the specific patterns of molecules
that change during human aging, we then grouped all the molecules
with similar trajectories using an unsupervised fuzzy c-means cluster-
ing approach' (Methods, Fig. 3b and Supplementary Fig. 2d,e). We
identified 11 clusters of molecular trajectories that changed during
aging, which ranged in size from 638 to 1,580 molecules/microbes
(Supplementary Fig. 2f and Supplementary Data). We found that most
molecular patterns exhibit nonlinear changes, indicating that agingis
not alinear process (Fig. 2b). Among the 11 identified clusters, three
distinct clusters (2,4 and 5) displayed compelling, straightforward and
easily understandable patterns that spanned the entire lifespan (Fig.
2¢). Most molecules withinthese three clusters primarily consist of tran-
scripts (Supplementary Fig. 2f), which is expected because transcripts
dominate the multi-omics data (8,556 out 0f 11,305, 75.7%). Cluster 4
exhibits arelatively stable pattern until approximately 60 years of age,
after which it shows a rapid decrease (Fig. 2c). Conversely, clusters 2
and 5 display fluctuations before 60 years of age, followed by a sharp
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Fig.3|Functional analysis of nonlinear changing moleculesin each cluster.
a, Pathway enrichment and module analysis for each transcriptome cluster. The
left panelis the heatmap for the pathways that undergo nonlinear changes across
aging. The right panelis the pathway similarity network (Methods) (n =108
participants). b, Pathway enrichment for metabolomics in each cluster. Enriched

pathways and related metabolites are illustrated (Benjamini-Hochberg-adjusted
P<0.05).c, Four clinical laboratory tests that change during human aging: blood
ureanitrogen, serum/plasma glucose, mean corpuscular hemoglobinand red
celldistribution width (n =108 participants). The box plot shows the median
(line), interquartile range (IQR) (box) and whiskers extending to 1.5 X IQR.

increase and an upper inflection point at approximately 55-60 years
ofage (Fig.2c). We also attempted to observe this pattern of molecular
change during aging individually. The participant with the longest
follow-up period of 6.8 years (Fig. 1c) approached the age of 60 years
(range, 59.5-66.3 years; Extended DataFig.1g), and it was not possible
toidentify obvious patternsin this short time window (Supplementary
Fig.2g). Trackingindividuals longitudinally over longer periods (dec-
ades) willbe required to observe these trajectories at anindividual level.
Although confounders, including sex, were corrected before
analysis (Methods), we acknowledge that the age range for meno-
pause in females is typically between 45 years and 55 years of age*
which is very close to the major transition points in all three clusters
(Fig. 2c). Therefore, we conducted further investigation into whether
the menopausal status of females in the dataset contributed to the
observed transition point at approximately 55 years of age (Fig. 2¢c)
by performing separate clustering analyses on the male and female
datasets. Surprisingly, both the male and female datasets exhibited
similar clusters, as illustrated in Extended Data Fig. 4a. This suggests
that the transition point observed at approximately 55 years of age is

not solely attributed to female menopause but, rather, represents a
common phenomenoninthe aging process of both sexes. This result is
consistent with previous studies'", further supporting the notion that
this transition point is a major characteristic feature of human aging.
Moreover, to investigate the possibility that the transcriptomics data
might skew the results toward transcriptomic changes as age-related
factors, we conducted two additional clustering analyses—one focusing
solely on transcriptomic data and another excluding it. Interestingly,
bothanalysesyielded nearly identical three-cluster configurations, as
observed using the complete omics dataset (Extended Data Fig. 4b).
Thisreinforces the robustness of the identified clusters and confirms
that they are consistent across various omics platforms, notjust driven
by transcriptomic data.

Nonlinear changes in function and disease risk during aging

To gain further insight into the biological functions associated with
the nonlinear changing molecules within the three identified clus-
ters, we conducted separate functional analyses for transcriptomics,
proteomics and metabolomics datasets for all three clusters. In brief,
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we constructed a similarity network using enriched pathways from
various databases (Gene Ontology (GO), Kyoto Encyclopedia of Genes
and Genomes (KEGG) and Reactome) and identified modules to elimi-
nate redundant annotations. We then used all modules from different
databases toreduce redundancy further using the same approach and
define the final functional modules (Methods, Extended Data Fig. 4c
and Supplementary Data). We identified some functional modules that
werereportedin previous studies, but we defined their more accurate
patterns of change during human aging. Additionally, we also found
previously unreported potential functional modules during human
aging (Supplementary Data). For instance, in cluster 2, we identified
atranscriptomic module associated with GTPase activity (adjusted
P=1.64 x107°) and histone modification (adjusted P=6.36 x107)
(Fig. 3a). Because we lack epigenomic data in this study, our findings
should be validated through additional experiments in the future.
GTPase activity is closely correlated with programmed cell death (apop-
tosis), and some previous studies showed that this activity increases
duringaging®. Additionally, histone modifications have been demon-
strated toincrease during human aging®. In cluster 4, we identified one
transcriptomics module associated with oxidative stress; this module
includes antioxidant activity, oxygen carrier activity, oxygen binding
and peroxidase activity (adjusted P=0.029) (Fig. 3a). Previous studies
demonstrated that oxidative stress and many reactive oxygen species
(ROS) are positively associated withincreased inflammationinrelation
to aging®. In cluster 5, the first transcriptomics module is associated
with mRNA stability, which includes mRNA destabilization (adjusted
P=0.0032), mRNA processing (adjusted P=3.2 x10™), positive regula-
tion of the mRNA catabolic process (adjusted P=1.46 x 10™*) and posi-
tiveregulation of the mRNA metabolic process (adjusted P= 0.00177)
(Fig. 3a). Previous studies showed that mRNA turnover is associated
withaging®. The second moduleis associated with autophagy (Fig. 3a),
which increases during human aging, as demonstrated in previous
studies®.

Inaddition, we alsoidentified certainmodulesin the clusters that
suggest a nonlinear increase in several disease risks during human
aging. For instance, in cluster 2, where components increase grad-
ually and then rapidly after age 60, the phenylalanine metabolism
pathway (adjusted P =4.95 x 10™*) was identified (Fig. 3b). Previous
studies showed that aging is associated with a progressive increasein
plasma phenylalanine levels concomitant with cardiac dysfunction,
and dysregulated phenylalanine catabolism is a factor that triggers
deviations from healthy cardiac aging trajectories®. Additionally,
C-X-C motif chemokine 5 (CXCL5 or ENA78) from proteomics data,
which has higher concentrations in atherosclerosis”, is also detected
in cluster 2 (Supplementary Data). The clinical laboratory test blood
urea nitrogen, which provides important information about kidney
function,isalsodetectedin cluster2 (Fig.3c). Thisindicates that kidney
function nonlinearly decreases during aging. Furthermore, the clinical
laboratory test for serum/plasmaglucose, amarker of type 2 diabetes
(T2D), falls within cluster 2. This is consistent with and supported by
many previous studies demonstrating that aging is amajor risk factor
for T2D*. Collectively, these findings suggest a nonlinear escalationin
therisk of cardiovascular and kidney diseases and T2D withadvancing
age, particularly after the age of 60 years (Fig. 2c).

The identified modules in cluster 4 also indicate a nonlinear
increase in disease risks. For instance, the unsaturated fatty acids
biosynthesis pathway (adjusted P=4.71x107) is decreased in clus-
ter 4. Studies have shown that unsaturated fatty acids are helpful
in reducing CVD risk and maintaining brain function®*°. The path-
way of alpha-linolenic acid and linolenic acid metabolism (adjusted
P=1.32x107*) canreduce aging-associated diseases, such as CVD*'. We
also detected the caffeine metabolism pathway (adjusted P=7.34 x107°)
in cluster 4, which suggests that the ability to metabolize caffeine
decreases during aging. Additionally, the cytokine MCP1 (chemokine
(C-C motif) ligand 2 (CCL2)), a member of the CC chemokine family,

playsanimportantimmune regulatory role andis alsoin cluster 4 (Sup-
plementary Data). These findings further support previous observa-
tions and highlight the nonlinear increase in age-related disease risk
asindividuals age.

Cluster 5comprises the clinical tests of mean corpuscular hemo-
globin and red cell distribution width (Fig. 3c). These tests assess the
average hemoglobin content per red blood cell and the variability in
the size and volume of red blood cells, respectively. These findings
align with the aforementioned transcriptomic data, which suggest a
nonlinear reduction in the oxygen-carrying capacity associated with
the aging process.

Aside from these three distinct clusters (Fig. 2c), we also con-
ducted pathway enrichment analysis across all other eight clusters,
which displayed highly nonlinear trajectories, employing the same
method (Fig.2b and Supplementary Data). Notably, cluster 11 exhibited
aconsistentincrease up until the age of 50, followed by a decline until
the age of 56, after which no substantial changes were observed up to
the age of 75. A particular transcriptomics module related to DNA repair
was identified, encompassing three pathways: positive regulation
of double-strand break repair (adjusted P=0.042), peptidyl-lysine
acetylation (adjusted P=1.36 x 10~) and histone acetylation (adjusted
P=3.45x10"*) (Extended Data Fig. 4d). These three pathways are criti-
calingenomic stability, gene expression and metabolic balances, with
their levels diminishing across the human lifespan®*. Our findings
reveal anonlinear alteration across the human lifespan in these path-
ways, indicating an enhancement in DNA repair capabilities before
the age of 50, a marked reduction between the ages of 50 and 56 and
stabilization after that until the age of 75. The pathway enrichment
results for all clusters are detailed in the Supplementary Data.

Altogether, the comprehensive functional analysis offers valuable
insightsinto the nonlinear changes observed in molecular profiles and
their correlations with biological functions and disease risks across
the human lifespan. Our findings reveal that individuals aged 60 and
older exhibit increased susceptibility to CVD, kidney issues and T2D.
Theseresults carryimportantimplications for both the diagnosis and
prevention of these diseases. Notably, many clinically actionable mark-
erswereidentified, which have the potential forimproved healthcare
management and enhanced overall well-being of the aging population.

Uncovering waves of aging-related molecules during aging
Althoughthetrajectory clustering approaches described above effec-
tively identify nonlinear changing molecules and microbes that exhibit
clearand compelling patterns throughout humanaging, it may notbe as
effectivein capturing substantial changes that occur at specific chrono-
logical aging periods. Insuch cases, alternative analytical approaches
may be necessary to detect and characterize these dynamics. To gain
a comprehensive understanding of changes in multi-omics profiling
during human aging, we used amodified version of the DE-SWAN algo-
rithm™, as described in the Methods section. This algorithm identifies
dysregulated molecules and microbes throughout the human lifespan
by analyzing molecule levels within 20-year windows and comparing
two groups in 10-year parcels while sliding the window incrementally
from young to old ages™. Using this approach and multiomics data,
we detected changes at specific stages of lifespan and uncovered the
sequential effects of aging. Our analysis revealed thousands of mol-
ecules exhibiting changing patterns throughout aging, forming distinct
waves, as illustrated in Fig. 3a. Notably, we observed two prominent
crests occurring around the ages of 45 and 65, respectively (Fig. 4a).
Notably, too, these crests were consistent with findings from a previous
study thatincluded only proteomics data'. Specifically, crest 2aligns
withour previoustrajectory clustering result, indicating a turning point
at approximately 60 years of age (Fig. 2c).

To demonstrate the significance of the two crests, we employed
different g value cutoffs and sliding window parameters, which consist-
ently revealed the same detectable waves (Fig. 4b,c and Supplementary
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Fig.4 | Waves of molecules and microbes during aging. a, Number of molecules
and microbes differentially expressed during aging. Two local crests at the ages
of 44 years and 60 years were identified. b,c, The same waves were detected

Age (years)

using different g value (b) and window (c) cutoffs. d, The number of molecules/
microbes differentially expressed for different types of omics data during
human aging.

Fig. 4a,b). Furthermore, when we permuted the ages of individuals,
the crests disappeared (Supplementary Figs. 3a and 4c) (Methods).
These observations highlight the robustness of the two major waves of
aging-related molecular changes across the human lifespan. Although
we already accounted for confounders before our statistical analy-
sis, we took additional steps to explore their impact. Specifically, we
investigated whether confounders, such as insulin sensitivity, sexand
ethnicity, differed between the two crests across various age ranges.
Asanticipated, these confounders did not show significant differences
across other age brackets (Supplementary Fig. 4d). This further sup-
portsour conclusionthat the observed differencesin the two crestsare
attributable to age rather than other confounding variables.

The identified crests represent notable milestones in the aging
process and suggest specific age ranges where substantial molecular
alterations occur. Therefore, we investigated the age-related waves for
eachtypeof omicsdata. Interestingly, most types of omics data exhib-
ited two distinct crests that were highly robust (Fig. 3b and Supplemen-
tary Fig. 4). Notably, the proteomics data displayed two age-related
crests at ages around 40 years and 60 years. Only a small overlap was
observed between our dataset and the results from the previous study
(1,305 proteins versus 302 proteins, with only 75 proteins overlapping).
The observed patterninour study was largely consistent with the pre-
vious findings". However, our finding that many types of omics data,
including transcriptomics, proteomics, metabolomics, cytokine, gut

microbiome, skin microbiome and nasal microbiome, exhibit these
waves, often with a similar pattern as the proteomics data (Fig. 4d),
supports the hypothesis that aging-related changes are not limited to
aspecific omics layer but, rather, involve a coordinated and systemic
alterationacross multiple molecular components. Identifying consist-
entcrestsacross different omics dataunderscores the robustness and
reliability of these molecular milestones in the aging process.

Next, we investigated the roles and functions of dysregulated mol-
ecules within two distinct crests. Notably, we found that the two crests
related to aging predominantly consisted of the same molecules (Sup-
plementary Fig. 6). To focus on the unique biological functions associ-
ated witheach crest and eliminate commonly occurring molecules, we
removed background molecules presentin most stages. To explore the
specific biological functions associated with each type of omics data
(transcriptomics, proteomics and metabolomics) for both crests, we
employed the function annotation approach described above (Meth-
ods). Inbrief, we constructed asimilarity network of enriched pathways
andidentified modules to remove redundant annotations (Supplemen-
tary Fig. 6 and Extended Data Fig. 5a,b). Furthermore, we applied the
same approach to allmodules to reduce redundancy and identify the
final functional modules (Methods and Extended Data Fig. 6a). Our
analysis revealed significant changes in multiple modules associated
with the two crests (Extended Data Fig. 6b—d). To present the results
clearly, Fig. 5a displays the top 20 pathways (according to adjusted
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Fig. 5| Functional analysis of aging-related waves of molecules across the human lifespan. a, Pathway enrichment and biological functional module analysis for
crests1and 2. Dots and lines are color-coded by omics type. b, The overlapping of molecules between two crests and three clusters.

P value) for each type of omics data, and the Supplementary Data
provides acomprehensive list of all identified functional modules.
Interestingly, the analysis identifies many dysregulated func-
tional modules in crests 1 and 2, indicating a nonlinear risk for
aging-related diseases. In particular, several modules associated
with CVD were identified in both crest 1 and crest 2 (Fig. 5a), which
is consistent with the above results (Fig. 3b). For instance, the dys-
regulation of platelet degranulation (crest 1: adjusted P=1.77 x 107%;
crest 2: adjusted P=1.73 x 107%¢)**¢, complement cascade (crest 1:
adjusted P=3.84 x107% crest 2: adjusted P=2.02 x 107%%), comple-
mentand coagulation cascades (crest1: adjusted P=1.78 x 107*; crest
2: adjusted P=2.02 x 107)*8 protein activation cascade (crest 1:
adjusted P=1.56 x107Y; crest 2: adjusted P=1.61x107%) and protease
binding (crest 1: adjusted P=2.7 x 107%; crest 2: adjusted P=0.0114)*
have various effects on the cardiovascular system and can contribute
to various CVDs. Furthermore, blood coagulation (crest 1: adjusted
P=1.48 x107%; crest 2: adjusted P=9.10 x 1077) and fibrinolysis (crest

1: adjusted P=2.11 x 107%; crest 2: adjusted P=1.64 x 107°) were also
identified, which are essential processes for maintaining blood fluidity,
and dysregulationin these modules canlead to thrombotic and cardio-
vascular events*®*, We also identified certain dysregulated metabolic
modules associated with CVD. For example, aging has been linked to
an incremental rise in plasma phenylalanine levels (crest 1: adjusted
P=9.214 x107*; crest 2: adjusted P= 0.0453), which can contribute to
the development of cardiac hypertrophy, fibrosis and dysfunction®.
Branched-chain amino acids (BCAAs), including valine, leucine and
isoleucine (crest 1: adjusted P: not significant (NS); crest 2: adjusted
P=0.0173), have also beenimplicated in CVD development****and T2D,
highlighting their relevance in CVD pathophysiology. Furthermore,
research suggests that alpha-linolenic acid (ALA) and linoleic acid
metabolism (crest 1: adjusted P: NS; crest 2: adjusted P=0.0217) may
be protective against coronary heart disease***. Our investigation
alsoidentified lipid metabolism modules that are associated with CVD,
including high-density lipoprotein (HDL) remodeling (crest 1: adjusted
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P=1.073 x107%; crest 2: adjusted P=2.589 x 10°) and glycerophospho-
lipid metabolism (crest1: adjusted P: NS; crest 2: adjusted P= 0.0033),
whichinfluence various CVDs***,

In addition, the dysregulation of skin and muscle stability was
foundtobeincreased atcrest1and crest 2, as evidenced by the identifi-
cationof numerous modules associated with these processes (Fig. 5a,b).
This suggests that the aging of skin and muscle is markedly accelerated
atcrestlandcrest2. Theextracellular matrix (ECM) provides structural
stability, mechanical strength, elasticity and hydration to the tissues
and cells, and the ECM of the skin is mainly composed of collagen,
elastinand glycosaminoglycans (GAGs)*. Phosphatidylinositolsare a
class of phospholipids that have various roles in cytoskeleton organiza-
tion*°. Notably, the dysregulation of ECM structural constituent (crest
1:adjusted P=3.32 x107%; crest 2: adjusted P=1.61 x 1078), GAG binding
(crest 1: adjusted P=1.805 x 10°75; crest 2: adjusted P=4.093 x107%)
and phosphatidylinositol binding (crest 1: adjusted P=3.391x1075;
crest 2: adjusted P=7.832 x 107°) were identified*"*>. We also identi-
fied cytolysis (crest 1: adjusted P= 2.973 x 107%; crest 2: adjusted P: NS),
which canincrease water loss*>. The dysregulated actin binding (crest
1:adjusted P=3.536 x 10°%; crest 2: adjusted P=3.435 x 10~°), actin fila-
mentorganization (crest1: adjusted P=8.406 x 107%; crest 2: adjusted
P=1.157 x107°) and regulation of actin cytoskeleton (crest 1: adjusted
P=0.00090242; crest 2: adjusted P=6.788 x 10™*) were identified,
whichaffect the structure and function of various tissues™**, Addition-
ally, celladhesionis the attachment ofacell to another cellor toECMvia
adhesionmolecules®. We identified the positive regulation of celladhe-
sion (crest1:adjusted P=3.618 x107%; crest 2: adjusted P=8.272 x 10™°)
module, which can prevent or delay skin aging®®®’. Threonine can affect
sialicacid production, whichis involved in cell adhesion®’. We also iden-
tified the glycine, serine and threonine metabolism (crest 1: adjusted
P:NS; crest 2: adjusted P=0.00506)%. Additionally, scavenging of
heme from plasma was identified (crest 1: adjusted P=1.176 x 107"
crest 2: adjusted P=1.694 x 107®), which can modulate skin aging as
excess-free heme can damage cellular components®***, Rho GTPases
regulate a wide range of cellular responses, including changes to the
cytoskeleton and cell adhesion (RHO GTPase cycle, crest 1: adjusted
P=9.956 x107%; crest 2: adjusted P=1.546 x 10)*. Inrelation to mus-
cle, previous studies demonstrated that muscle mass decreases by
approximately 3-8% per decade after the age of 30, withaneven higher
decline rate after the age of 60, which consistently coincides with the
observed second crest®. Interestingly, we identified dysregulationin
the module associated with the structural constituent of muscle (crest
1: adjusted P=0.00565; crest 2: adjusted P=0.0162), consistent with
previous findings®. Furthermore, we identified the pathway associ-
ated with caffeine metabolism (crest 1: adjusted P=0.00378; crest 2:
adjusted P=0.0162), whichis consistent with our observations above
(Fig.2b) and implies that the capacity to metabolize caffeine undergoes
anotable alteration not only around 60 years of age but also around
the age of 40 years.

In crest 1, we identified specific modules associated with lipid
and alcohol metabolism. Previous studies established that lipid
metabolism declines with human aging®. Our analysis revealed sev-
eralmodulesrelated tolipid metabolism, including plasmalipoprotein
remodeling (crest 1: adjusted P=2.269 x 10°), chylomicron assembly
(crest 1: adjusted P=9.065 x 1077) and ATP-binding cassette (ABC)
transporters (adjusted P=1.102 x 107*). Moreover, we discovered
amodule linked to alcohol metabolism (alcohol binding, adjusted
P=8.485x107), suggesting a decline in alcohol metabolization effi-
ciency with advancing age, particularly around the age of 40, when it
significantly diminishes. In crest 2, we observed prominent modules
related toimmune dysfunction, encompassing acute-phase response
(adjusted P=2.851 x10°%), antimicrobial humoral response (adjusted
P=2.181x107),zymogen activation (adjusted P=4.367 x 10°°), comple-
ment binding (adjusted P=0.002568), mononuclear cell differentia-
tion (adjusted P=9.352 x 10°8), viral process (adjusted P=5.124 x 107)

and regulation of hemopoiesis (adjusted P=3.522 x107) (Fig. 5a).
Age-related changes in the immune system, collectively known as
immunosenescence, have been extensively documented®® ", and
our results demonstrate a rapid decline at age 60. Furthermore, we
alsoidentified modules associated with kidney function (glomerular
filtration, adjusted P=0.00869) and carbohydrate metabolism (carbo-
hydrate binding, adjusted P=0.01045). Our previous findings indicated
adeclineinkidney function around the age of 60 years (Fig. 3c), as did
the present result of this observation. Previous studies indicated the
influence of carbohydrates on aging, characterized by the progres-
sive decline of physiological functions and increased susceptibility
to diseases over time”’,

Insummary, our analysisidentifies many dysregulated functional
modules identified in both crest 1 and crest 2 that underlie the risk
for various diseases and alterations of biological functions. Notably,
we observed an overlap of dysregulated functional modules among
clusters 2, 4 and 6 because they overlap at the molecular level, as
depictedinFig. 5b. Thisindicates that certain molecular components
areshared amongthese clusters and the identified crests. However, it
isimportant to note that numerous molecules are specific to each of
the two approaches employed in our study. This suggests that these
two approaches complement each other in identifying nonlinear
changes in molecules and functions during human aging. By using
both approaches, we were able to capture a more comprehensive
understanding of the molecular alterations associated with aging and
their potential implications for diseases.

Discussion
Analyzing alongitudinal multi-omics dataset involving 108 partici-
pants, we successfully captured the dynamic and nonlinear molecu-
lar changes that occur during human aging. Our study’s strength lies
in the comprehensive nature of the dataset, which includes multiple
time point samples for each participant. This longitudinal design
enhances the reliability and robustness of our findings compared to
cross-sectional studies with only one time point sample for each par-
ticipant. The first particularly intriguing finding from our analysis is
that only asmallfraction of molecules (6.6%) displayed linear changes
throughout human aging (Fig. 1d). This observationis consistent with
previous research and underscores the limitations of relying solely
on linear regression to understand the complexity of aging-related
molecular changes®. Instead, our study revealed that a considerable
number of molecules (81.0%) exhibited nonlinear patterns (Fig. 1e).
Notably, this nonlinear trend was observed across all types of omics
data with remarkably high consistency (Fig. 1e,g), highlighting the
widespread functionally relevant nature of these dynamic changes. By
unveiling the nonlinear molecular alterations associated with aging,
our research contributes to amore comprehensive understanding of
the aging process and its molecular underpinnings.
Tofurtherinvestigate the nonlinear changing molecules observed
in our study, we employed a trajectory clustering approach to group
molecules with similar temporal patterns. This analysis revealed the
presence of three distinct clusters (Fig. 2c) that exhibited clear and
compelling patterns across the human lifespan. These clusters suggest
that there are specific age ranges, such as around 60 years old, where
distinct and extensive molecular changes occur (Fig. 2c). Functional
analysis revealed several modules that exhibited nonlinear changes
during human aging. For example, we identified amodule associated
with oxidative stress, whichis consistent with previous studies linking
oxidative stress to the aging process® (Fig. 3a). Our analysis indicates
that this pathway increases significantly after the age of 60 years. In
cluster 5, weidentified atranscriptomics module associated withmRNA
stabilization and autophagy (Fig.3a). Both of these processes have been
implicatedintheaging process and areinvolved inmaintaining cellular
homeostasis and removing damaged components. Furthermore, our
analysis uncovered nonlinear changes in disease risk across aging.
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In cluster 2, we identified the phenylalanine metabolism pathway
(Fig. 3b), which has been associated with cardiac dysfunction during
aging®. Additionally, we found that the clinical laboratory tests blood
urea nitrogen and serum/plasma glucose increase significantly with
age (cluster 2; Fig. 3c), indicating a nonlinear declinein kidney function
and anincreased risk of T2D with age, with a critical threshold occur-
ring approximately at the age of 60 years. In cluster 4, we identified
pathways related to cardiovascular health, such as the biosynthesis
of unsaturated fatty acids and caffeine metabolism (Fig. 3b). Overall,
our study provides compelling evidence for the existence of nonlinear
changesin molecular profiles during human aging. By elucidating the
specific functional modules and disease-related pathways that exhibit
such nonlinear changes, we contribute to a better understanding of
the complex molecular dynamics underlying the aging process and
itsimplications for disease risk.

Although the trajectory clustering approach proves effective in
identifying molecules that undergo nonlinear changes, it may not be
as proficientin capturing substantial alterations that occur at specific
time points without exhibiting a consistent patternin other stages. We
then employed amodified version of the DE-SWAN algorithm™ to com-
prehensively investigate changes in multi-omics profiling throughout
human aging. This approach enabled us to identify waves of dysregu-
lated molecules and microbes across the human lifespan. Our analysis
revealed two prominent crests occurring around the ages of 40 years
and 60 years, which were consistent across various omics data types,
suggesting their universal nature (Fig. 4a,e). Notably, in the proteom-
ics data, we observed crests around the ages of 40 years and 60 years,
which aligns approximately with a previous study (which reported
crests at ages 34 years, 60 yearsand 78 years)'. Due to the age range of
our cohortbeing25-75 years, we did not detect the third peak. Further-
more, the differences in proteomics data acquisition platforms (mass
spectrometry versus SomaScan)'*” resulted in different identified
proteins, with only asmall overlap (1,305 proteins versus 302 proteins,
of which only 75 were shared). This discrepancy may explain the age
variation of the first crestidentified in the two studies (approximately
10 years). However, despite the differences in the two proteomics
datasets, the wave patterns observed in both studies were highly simi-
lar™ (Fig. 4a). Remarkably, by considering multiple omics data types,
we consistently identified similar crests for each type, indicating the
universality of these waves of change across plasma molecules and
microbes from various body sites (Fig. 4e and Supplementary Fig. 3).

The analysis of molecular functionality in the two distinct crests
revealed the presence of several modules, indicating a nonlinear
increaseintherisks of various diseases (Fig. 5a). Both crest1and crest
2 exhibit the identification of multiple modules associated with CVD,
which aligns with the aforementioned findings (Fig. 3b). Moreover,
we observed an escalated dysregulation in skin and muscle function-
ing in both crest 1and crest 2. Additionally, we identified a pathway
linked to caffeine metabolism, indicating a noticeable alteration in
caffeine metabolization not only around the age of 60 but also around
the age of 40. This shift may be due to either a metabolic shift or a
change in caffeine consumption. In crest 1, we also identified specific
modules associated with lipid and alcohol metabolism, whereas crest
2 demonstrated prominent modules related toimmune dysfunction.
Furthermore, we also detected modules associated with kidney func-
tionand carbohydrate metabolism, whichis consistent with our above
results. These findings reinforce our previous observations regarding
adeclinein kidney function around the age of 60 years (Fig. 3c) while
shedding light on the impact of dysregulated functional modules in
both crest 1and crest 2, suggesting nonlinear changes in disease risk
and functional dysregulation. Notably, we identified an overlap of
dysregulated functional modules among clusters 2,4 and 6, indicating
molecular-level similarities between these clusters and the identi-
fied crests (Fig. 5b). This suggests the presence of shared molecular
components among these clusters and crests. However, itis crucial to

note that there are also numerous molecules specific to each of the two
approaches employed in our study, indicating that these approaches
complement each otherinidentifying nonlinear changesin molecules
and functions during human aging.

The present research is subject to certain constraints. We
accounted for many basic characteristics (confounders) of partici-
pantsinthe cohort; but because this study primarily reflects between-
individual differences, there may be additional confounders due to
the different age distributions of the participants. For example, we
identified a notable decrease in oxygen carrier activity around age
60 (Figs. 2c and 3a) and marked variations in alcohol and caffeine
metabolism around ages 40 and 60 (Fig. 3a). However, these findings
might be shaped by participants’ lifestyle—that is, physical activity
andtheir alcohol and caffeine intake. Regrettably, we do not have such
detailed behavioral data for the entire group, necessitating validation
in upcoming research. Although initial BMI and insulin sensitivity
measurements were available at cohort entry, subsequent metrics
during the observation span were absent, marking a study limitation.

A further constraint is our cohort’s modest size, encompassing
merely108individuals (eightindividuals between 25 yearsand 40 years
of age), which hampers the full utilization of deep learning and may
affect therobustness of theidentification of nonlinear changing features
inFig. le. Althoughadvanced computational techniques, including deep
learning, are pivotal for probing nonlinear patterns, our sample size
poses restrictions. Expanding the cohort size in subsequent research
would be instrumental in harnessing the full potential of machine learn-
ingtools. Another limitation of our study is that the recruitment of par-
ticipants was withinthe community around Stanford University, driven
byrigorous sample collection procedures and the substantial expenses
associated with setting up alongitudinal cohort. Although our partici-
pants exhibited a considerable degree of ethnic age and biological sex
diversity (Fig. 1a and Supplementary Data), itisimportant to acknowl-
edge that our cohort may not fully represent the diversity of the broader
population. The selectivity of our cohort limits the generalizability of
our findings. Future studies should aim toinclude amore diverse cohort
to enhance the external validity and applicability of the results.

In addition, the mean observation span for participants was
626 days, which is insufficient for detailed inflection point analyses.
Our cohort’s age range of 25-70 yearslacksindividuals wholie outside
ofthisrange. The molecular nonlinearity detected might be subject to
inherent variations or oscillations, afactor to consider during interpre-
tation. Our analysis has not delved into the nuances of the dynamical
systems theory, which provides arobust mathematical framework for
understanding observed behaviors. Delvinginto this theory in future
endeavors may yield enhanced clarity and interpretation of the data.

Moreover, it should be noted that, in our study, the observed
nonlinear molecular changes occurred across individuals of varying
ages rather than within the same individuals. This is attributed to the
fact that, despite our longitudinal study, the follow-up period for our
participants was relatively brief for following aging patterns (median,
1.7 years; Extended Data Fig. 1g). Such a timeframe is inadequate for
detecting nonlinear molecular changes that unfold over decades
throughout the human lifespan. Addressing this limitation in future
research is essential.

Lastly, our study’s molecular data are derived exclusively from
blood samples, casting doubt onits direct relevance to specific tissues,
such as the skin or muscles. We propose that blood gene expression
variations might hint at overarching physiological alterations, poten-
tiallyimpacting the ECMintissues, including skin and muscle. Notably,
someblood-based biomarkers and transcripts have demonstrated cor-
relations with tissue modifications, inflammation and other elements
influencing the ECM across diverse tissues’”.

In our future endeavors, the definitive confirmation of our find-
ings hinges on determiningif nonlinear molecular patterns align with
nonlinear changes in functional capacities, disease occurrences and
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mortality hazards. For a holistic grasp of this, amalgamating multi-
faceted datafrom long-term cohort studies covering several decades
becomes crucial. Such data should encompass molecular markers,
comprehensive medical records, functional assessments and mortality
data. Moreover, employing cutting-edge statistical techniquesis vital
to intricately decipher the ties between these nonlinear molecular
paths and health-centric results.

In summary, the unique contribution of our study lies not merely
in reaffirming the nonlinear nature of aging but also in the depth and
breadth of the multi-omics data that we analyzed. Our study goes beyond
stating that aging is nonlinear by identifying specific patterns, inflection
points and potential waves in aging across multiple layers of biological
data during human aging. Identifying specific clusters with distinct
patterns, functionalimplications and disease risks enhances our under-
standing of the aging process. By considering the nonlinear dynamics
of aging-related changes, we can gain insights into specific periods
of significant changes (around age 40 and age 60) and the molecular
mechanisms underlying age-related diseases, which could lead to the
development of early diagnosis and prevention strategies. These com-
prehensive multi-omics dataand the approach allow for amore nuanced
understanding of the complexitiesinvolved in the aging process, which
we think adds value to the existing body of research. However, further
research is needed to validate and expand upon these findings, poten-
tiallyincorporatinglarger cohortsto capture the full complexity of aging.

Methods

The participant recruitment, sample collection, data acquisition and
data processing were documented in previous studies conducted by
Zhou et al.”, Ahadi et al.’, Schiissler-Fiorenza Rose et al.”’, Hornburg
etal.”*and Zhouetal.”.

Participant recruitment
Participants provided informed written consent for the study under
research protocol 23602, which was approved by the Stanford Uni-
versity institutional review board. This study adheres to all relevant
ethical regulations, ensuring informed consents were obtained from
all participants. All participants consented to publication of potentially
identifiable information. The cohort comprised 108 participants who
underwent follow-up assessments. Exclusion criteria encompassed
conditions such as anemia, kidney disease, a history of CVD, cancer,
chronic inflammation or psychiatric illnesses as well as any prior bari-
atric surgery or liposuction. Each participant who met the eligibility
criteriaand provided informed consent underwent aone-time modified
insulin suppression test to quantify insulin-mediated glucose uptake
at the beginning of the enrollment’. The steady-state plasma glucose
(SSPG) levels served as a direct indicator of each individual’s insulin
sensitivity in processing aglucose load. We categorized individuals with
SSPG levels below 150 mg dI™ as insulin sensitive and those with levels
of150 mg dI” or higher as insulin resistant®>®', Thirty-eight participants
were missing SSPG values, rendering their insulin resistance or sensi-
tivity status undetermined. We also collected fasting plasma glucose
(FPG) data for 69 participants at enrollment. Based on the FPG levels,
two participants were identified as having diabetes at enrollment, with
FPG levels exceeding 126 mg dI™ (Supplementary Data). Additionally, we
measured hemoglobin A1C (HbA1C) levels during eachvisit, usingitasa
marker for average glucose levels over the past 3 months: 6.5% or higher
indicates diabetes. Accordingly, four participants developed diabetes
during thestudy period. At the beginning of the enrollment, BMIwas also
measured for each participant. Participants received no compensation.
Comprehensive sample collection was conducted during the
follow-up period, and multi-omics data were acquired (Fig. 1b). For
each visit, the participants self-reported as healthy or non-healthy™.
To ensure accuracy and minimize the impact of confounding factors,
only samples from individuals classified as healthy were selected for
subsequent analysis.

Transcriptomics

Transcriptomic profiling was conducted on flash-frozen PBMCs. RNA
isolation was performed using a QIAGEN All Prep kit. Subsequently,
RNA libraries were assembled using an input of 500 ng of total RNA.
In brief, ribosomal RNA (rRNA) was selectively eliminated from the
total RNA pool, followed by purification and fragmentation. Reverse
transcription was carried out using arandom primer outfitted with an
Illumina-specific adaptor to yield a cDNA library. A terminal tagging
procedure was used to incorporate a second adaptor sequence. The
final cDNA library underwent amplification. RNA sequencing libraries
underwent sequencing on an Illumina HiSeq 2000 platform. Library
quantification was performed via an Agilent Bioanalyzer and Qubit
fluorometric quantification (Thermo Fisher Scientific) using a high-
sensitivity dsDNA kit. After normalization, barcoded libraries were
pooled at equimolar ratios into a multiplexed sequencing library. An
average of 5-6 libraries were processed per HiSeq 2000 lane. Standard
lllumina pipelines were employed forimage analysis and base calling.
Read alignmentto the hgl9 reference genome and personal exomes was
achieved using the TopHat package, followed by transcript assembly
and expression quantification via HTseq and DESeq2. In the realm of
data pre-processing, genes with an average read countacross all sam-
pleslower than 0.5 were excluded. Samples exhibiting an average read
countlower than 0.5across all remaining genes were likewise removed.
For subsequent global variance and correlation assessments, genes
with an average read count of less than 1 were eliminated.

Proteomics

Plasma sample tryptic peptides were fractionated using a NanoLC
425 System (SCIEX) operating at a flow rate of 5 ul min™ under a trap-
elute configuration witha 0.5 x 10 mm ChromXP column (SCIEX). The
liquid chromatography gradient was programmed for a 43-min run,
transitioning from 4% to 32% of mobile phase B, with an overall run
time of 1 h. Mobile phase A consisted of water with 0.1% formic acid,
and mobile phase B was formulated with 100% acetonitrile and 0.1%
formicacid. An 8-pgaliquot of non-depleted plasma was loaded onto
a15-cm ChromXP column. Mass spectrometry analysis was executed
employing SWATH acquisitionona TripleTOF 6600 system. A set of 100
variable Q1 window SWATH acquisition methods was designed in high-
sensitivity tandem mass spectrometry (MS/MS) mode. Subsequent
dataanalysis included statistical scoring of peak groups fromindividual
runsvia pyProphet®, followed by multi-run alignment through TRIC60,
ultimately generating afinalized data matrix with a false discovery rate
(FDR) of 1% at the peptide level and 10% at the protein level. Protein
quantitation was based onthe sum of the three most abundant peptide
signals for each protein. Batch effect normalization was achieved by
subtracting principal components that primarily exhibited batch-
associated variation, using Perseus software v.1.4.2.40.

Untargeted metabolomics

A ternary solvent system of acetone, acetonitrile and methanol in a
1:1:1ratio was used for metabolite extraction. The extracted metabo-
lites were dried under a nitrogen atmosphere and reconstituted in a
1:1methanol:water mixture before analysis. Metabolite profiles were
generated using both hydrophilic interaction chromatography (HILIC)
and reverse-phase liquid chromatography (RPLC) under positive and
negative ion modes. Thermo Q Exactive Plus mass spectrometers
were employed for HILIC and RPLC analyses, respectively, in full MS
scan mode. MS/MS data were acquired using quality control (QC)
samples. For the HILIC separations, a ZIC-HILIC column was used with
mobile phase solutions of 10 mM ammonium acetate in 50:50 and 95:5
acetonitrile:water ratios. In the case of RPLC, a Zorbax SBaq column
was used, and the mobile phase consisted of 0.06% acetic acid in water
and methanol. Metabolic feature detection was performed using Pro-
genesis Ql software. Features from blanks and those lacking sufficient
linearity upon dilution were excluded. Only features appearing in more
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than 33% of the samples were retained for subsequent analyses, and any
missing values were imputed using the k-nearest neighbors approach.
We employed locally estimated scatterplot smoothing (LOESS) nor-
malization® to correct the metabolite-specific signal drift over time.
The metid package®* was used for metabolite annotation.

Cytokine data

A panel of 62 human cytokines, chemokines and growth factors was
analyzed in EDTA-anticoagulated plasma samples using Luminex-
based multiplex assays with conjugated antibodies (Affymetrix). Raw
fluorescence measurements were standardized to median fluorescence
intensity values and subsequently subjected to variance-stabilizing
transformation to account for batch-related variations. As previously
reported’®, data points characterized by background noise, termed
CHEX, that deviate beyond five standard deviations from the mean
(mean *5 xs.d.) were excluded from the analyses.

Clinical laboratory test

Thetests encompassed acomprehensive metabolic panel, afull blood
count, glucose and HbA1C levels, insulin assays, high-sensitivity C-reac-
tive protein (hsCRP), immunoglobulin M (IgM) and lipid, kidney and
liver panels.

Lipidomics

Lipid extraction and quantification procedures were executed in
accordance with established protocols’®. In summary, complex lipids
wereisolated from 40 pl of EDTA plasmausing a solvent mixture com-
prising methyl tertiary-butyl ether, methanol and water, followed by
abiphasicseparation. Subsequent lipid analysis was conducted on the
Lipidyzer platform, incorporating a differential mobility spectrometry
device (SelexION Technology) and a QTRAP 5500 mass spectrometer
(SCIEX).

Microbiome

Immediately after arrival, samples were stored at —80 °C. Stool and
nasal samples were processed and sequenced in-house at the Jackson
Laboratory for Genomic Medicine, whereas oral and skin samples
were outsourced to uBiome for additional processing. Skin and oral
samples underwent 30 min of beads-beating lysis, followed by assilica-
guanidinium thiocyanate-based nucleic acid isolation protocol. The
V4 region of the 16S rRNA gene was amplified using specific prim-
ers, after which the DNA was barcoded and sequenced on an lllumina
NextSeq 500 platformviaa 2 x 150-bp paired-end protocol. Similarly,
stool and nasal samples were processed for 16S rRNA V1-V3 region
amplification using a different set of primers and sequenced on an
Illumina MiSeq platform. For data processing, the raw sequencing
datawere demultiplexed using BCL2FASTQ software and subsequently
filtered for quality. Reads with a Q-score lower than 30 were excluded.
The DADA2 R package was used for further sequence data processing,
which included filtering out reads with ambiguous bases and errors,
removing chimeras and aligning sequences against a validated 16S
rRNA gene database. Relative abundance calculations for amplicon
sequence variants (ASVs) were performed, and samples with inad-
equate sequencing depth (<1,000 reads) were excluded. Local outlier
factor (LOF) was calculated for each point on a depth-richness plot,
and samples withabnormal LOF were removed. In summary, rigorous
procedures were followed in both the collection and processing stages,
leveraging automated systems and specialized software to ensure the
quality and integrity of the microbiome data across multiple body sites.

Statistics and reproducibility

Forall data processing, statistical analysis and data visualization tasks,
RStudio, along with R language (v.4.2.1), was employed. A compre-
hensive list of the packages used can be found in the Supplementary
Note. The Benjamini-Hochberg method was employed to account for

multiple comparisons. Spearman correlation coefficients were calcu-
lated using the R functions ‘cor’ and ‘cor.test’. Principal-component
analysis (PCA) was conducted using the R function ‘princomp’. Before
all the analyses, the confounders, such as BMI, sex, IRIS and ethnicity,
were adjusted using the previously published method”. In brief, we
used the intensity of each feature as the dependent variable (Y) and the
confounding factors as theindependent variables (X) to build alinear
regression model. The residuals from this model were then used as the
adjusted values for that specific feature.

Allthe omics datawere acquired randomly. No statistical methods
were used to predetermine the sample size, but our sample sizes are
similar to those reported in previous publications>*’, and no data
were excluded from the analyses. Additionally, the investigators were
blinded to allocation during experiments and outcome assessment to
the conditions of the experiments. Data distribution was assumed to
be normal, but this was not formally tested.

Theicons usedinfigures are fromiconfont.cn, which canbe used
for non-commercial purposes under the MIT license (https://pub.dev/
packages/iconfont/license).

Cross-sectional dataset generation

The ‘cross-sectional’ dataset was created by briefly extractinginforma-
tion from the longitudinal dataset. The mean value was calculated to
represent each molecule’sintensity for each participant. Similarly, the
age of each participant was determined by calculating the mean value
of ages across all sample collection time points.

Linear changing molecule detection

We detected linear changing molecules during human aging using
Spearman correlationand linear regression modeling. The confound-
ers, such as BMI, sex, IRIS and ethnicity, were adjusted using the pre-
viously published method”. Our analysis revealed a high correlation
between these two approaches in identifying such molecules. Based
on these findings, we used the Spearman correlation approach to
showcase the linear changing molecules during human aging. The
permutation test was also used to get the permutated Pvalues for each
feature. In brief, each feature was subjected to sample label shuffling
followed by arecalculation of the Spearman correlation. This process
was reiterated 10,000 times, yielding 10,000 permuted Spearman
correlations. The original Spearman correlation was then compared
against these permuted values to obtain the permuted Pvalues.

Dysregulated molecules compared to baseline during

human aging

Todepictthe dysregulated molecules during human aging compared to
thebaseline, we categorized the participantsinto different age stages
based ontheir ages. The baseline stage was defined as individuals aged
25-40 years. For each age stage group, we employed the Wilcoxon test
to identify dysregulated molecules in comparison to the baseline,
considering a significance threshold of P < 0.05. Before the statistical
analysis, all the confounders were corrected. Subsequently, we visual-
ized theresulting dysregulated molecules at different age stages usinga
Sankey plot. The permutation test was also used to get the permutated
Pvalues for each feature. In brief, we shuffled the sample labels and
recalculated the absolute mean difference between the two groups,
against which the actual absolute mean difference was benchmarked to
derive the permuted Pvalues. Toidentify the molecules and microbes
that exhibited significant changes at any given age stage, we adjusted
the Pvalues for each feature by multiplying them by 6. This adjustment
adheres to the Bonferroni correction method, ensuring a rigorous
evaluation of statistical significance.

Evaluation of the age reflected by different types of omics data
Toassess whether each type of omics dataaccurately reflects the ages
of individuals in our dataset, we conducted a PCA. Subsequently, we
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computed the Spearman correlation coefficient between the ages of
participants and the first principal component (PC1). The absolute
value of this coefficient was used to evaluate the degree to which the
omics datareflect the ages (Fig. 2a). PLS regression was also used to
compare the strength of the age effect to the different omics data
types. In brief, the ‘pls’ function from the R package mixOmics was
used to construct theregression model between omics dataand ages.
Then, the ‘perf’ function was used to assess the performance of all
the modules with sevenfold cross-validation. The R* was extracted to
assess the strength of the age effect on the different omics data types.

LOESS data

To accommodate the varying time points of biological and omics
data, we employed the LOESS approach. This approach allowed us to
smooth and predict the multi-omics data at specific time points (that
is, every half year)'*®. In brief, for each molecule, we fitted a LOESS
regression model. During the fitting process, the LOESS argument
‘span’ was optimized through cross-validation. This ensured that the
LOESS model provided an accurate and non-overfitting fit to the data
(Supplementary Fig. 2a,b). Once we obtained the LOESS prediction
model, we appliedit to predict theintensity of eachmolecule at every
half-year time point.

Trajectory clustering analysis

To conduct trajectory clustering analysis, we employed the fuzzy
c-means clustering approach available in the R package ‘Mfuzz. This
approach was previously described in our publication”. The analysis
proceeded in several steps. First, the omics data were auto-scaled to
ensure comparable ranges. Next, we computed the minimum centroid
distances for a range of cluster numbers, specifically from 2 to 22, in
step 1. These minimum centroid distances served as a cluster validity
index, helping us determine the optimal cluster number. Based on
predefined rules, we selected the optimal cluster number. To refine
the accuracy of this selection, we merged clusters with center expres-
sion data correlations greater than 0.8 into a single cluster. This step
aimed to capture similar patterns withinthe data. The resulting optimal
cluster number was then used for the fuzzy c-means clustering. Only
molecules with memberships above 0.5 were retained within each
cluster for further analysis. This threshold ensured that the molecules
exhibited a strong association with their assigned cluster and contrib-
uted considerably to the cluster’s characteristics.

Pathway enrichment analysis and functional module
identification

Transcriptomics and proteomics pathway enrichment. Pathway
enrichment analysis was conducted using the ‘clusterProfiler’ R pack-
age®. The GO, KEGG and Reactome databases were used. The P val-
ues were adjusted using the Benjamini-Hochberg method, with a
significance threshold set at <0.05. To minimize redundant enriched
pathways and GO terms, we employed a series of analyses. First, for
enriched GO terms, we used the ‘Wang’ algorithm from the R package
‘simplifyEnrichment’to calculate the similarity between GO terms. Only
connections with a similarity score greater than 0.7 were retained to
construct the GO term similarity network. Subsequently, community
analysis was performed using the ‘igraph’ R package to partition the
network into distinct modules. The GO term with the smallest enrich-
ment adjusted P value was chosen as the representative within each
module. The same approach was applied to the enriched KEGG and
Reactome pathways, with one slight modification. In this case, the ‘jac-
card’ algorithm was used to calculate the similarity between pathways,
and asimilarity cutoff of 0.5 was employed for the Jaccard index. After
removing redundant enriched pathways, we combined all the remain-
ing GO terms and pathways. Subsequently, we calculated the similarity
between these merged entities using the Jaccard index. This similarity
analysis aimed to capture the overlap and relationships between the

different GO terms and pathways. Using the same approach as before,
we performed community analysis to identify distinct biological func-
tional modules based on the merged GO terms and pathways.

Identification of functional modules. First, we used the ‘Wang’ algo-
rithm for the GO database and the ‘jaccard’ algorithm for the KEGG and
Reactome databases to calculate the similarity between pathways. The
enriched pathways served as nodesin asimilarity network, withedges
representing the similarity between two nodes. Next, we employed
the R package ‘igraph’ to identify modules within the network based
on edge betweenness. By gradually removing edges with the highest
edge betweenness scores, we constructed a hierarchical map known as
adendrogram, representing arooted tree of the graph. The leafnodes
correspond to individual pathways, and the root node represents the
entire graph®. We then merged pathways within each module, select-
ing the pathway with the smallest adjusted P value to represent the
modaule. After this step, we merged pathways fromall three databases
intomodules. Subsequently, we repeated the process by calculating the
similarity between modules from all three databases using the ‘jaccard’
algorithm. Once again, we employed the same approach described
above to identify the functional modules.

Metabolomics pathway enrichment. To perform pathway enrichment
analysis for metabolomics data, we used the human KEGG pathway
database. This database was obtained from KEGG using the R pack-
age ‘massDatabase’®®. For pathway enrichment analysis, we employed
the hypergeometric distribution test from the ‘TidyMass’ project®.
This statistical test allowed us to assess the enrichment of metabo-
lites within each pathway. To account for multiple tests, Pvalues were
adjusted using the Benjamini-Hochberg method. We considered path-
ways with Benjamini-Hochberg-adjusted P values lower than 0.05 as
significantly enriched.

Modified DE-SWAN

The DE-SWAN algorithm' was used. To begin, aunique age is selected as
the center of a20-year window. Molecule levelsinindividuals younger
than and older than that age are compared using the Wilcoxon test
to assess differential expression. P values are calculated for each
molecule, indicating the significance of the observed differences. To
ensure sufficient sample sizes for statistical analysis in each time win-
dow, the initial window ranges from ages 25 to 50. The left half of this
window covers ages 25-40, whereas the right half spans ages 41-50.
The window then moves in one-year steps; this is why Fig. 4 displays
an age range of 40-65 years. To account for multiple comparisons,
these Pvalues are adjusted using Benjamini-Hochberg correction. To
evaluate the robustness and relevance of the DE-SWAN results, the algo-
rithmis tested with various parcel widths, including 15 years, 20 years,
25yearsand 30 years. Additionally, different g value thresholds, such
as <0.0001, <0.001, <0.01 and <0.05, are applied. By comparing the
results obtained with these different parameters to results obtained
by chance, we can assess the significance of the findings. To generate
random results for comparison, the phenotypes of theindividuals are
randomly permuted, and the modified DE-SWAN algorithmis applied
to the permuted dataset. This allows us to determine whether the
observed results obtained with DE-SWAN are statistically significant
and not merely aresult of chance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Therawdataused in this study canbe accessed without any restrictions
onthe National Institutes of Health Human Microbiome 2 project site
(https://portal.hmpdacc.org). Both the raw and processed data are
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also available on the Stanford iPOP site (http://med.stanford.edu/ipop.
html). Researchers and interested individuals can visit these websites
toaccess the data. For further details and inquiries about the study, we
recommend contacting the corresponding author, who can provide
additional information and address any specific questions related to
the research.

Code availability

The statistical analysis and data processing in this study were per-
formed using R v.4.2.1, along with various base packages and addi-
tional packages. Detailed information about the specific packages
used can be found in the Supplementary Note, which accompanies
the manuscript. Furthermore, all the custom scripts developed for
this study have been made openly accessible and can be found on the
GitHubrepository at https://github.com/jaspershen-lab/ipop_aging.
By visiting this repository, researchers and interested individuals can
access and use the customscripts for their own analyses or toreplicate
the study’s findings.
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