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Abstract

Introduction Untargeted metabolomics studies for bio-

marker discovery often have hundreds to thousands of

human samples. Data acquisition of large-scale samples

has to be divided into several batches and may span from

months to as long as several years. The signal drift of

metabolites during data acquisition (intra- and inter-batch)

is unavoidable and is a major confounding factor for large-

scale metabolomics studies.

Objectives We aim to develop a data normalization

method to reduce unwanted variations and integrate mul-

tiple batches in large-scale metabolomics studies prior to

statistical analyses.

Methods We developed a machine learning algorithm-

based method, support vector regression (SVR), for large-

scale metabolomics data normalization and integration. An

R package named MetNormalizer was developed and

provided for data processing using SVR normalization.

Results After SVR normalization, the portion of

metabolite ion peaks with relative standard deviations

(RSDs) less than 30 % increased to more than 90 % of the

total peaks, which is much better than other common

normalization methods. The reduction of unwanted ana-

lytical variations helps to improve the performance of

multivariate statistical analyses, both unsupervised and

supervised, in terms of classification and prediction accu-

racy so that subtle metabolic changes in epidemiological

studies can be detected.

Conclusion SVR normalization can effectively remove

the unwanted intra- and inter-batch variations, and is much

better than other common normalization methods.

Keywords Metabolomics � Data normalization � Data
integration � Support vector regression � Quality control

1 Introduction

Metabolites are defined as the collection of small mole-

cules that are produced during metabolism (Nicholson and

Lindon 2008; Patti et al. 2012a; Rabinowitz and Silhavy

2013; Fiehn 2002). Mass spectrometry-based untargeted

metabolomics has enabled simultaneous quantitative mea-

surements of thousands of metabolites using minimal

amounts of biological samples, providing functional read-

outs of physiological and pathological states of biological

individuals at the systems level (Patti et al. 2012b).

Although relatively new compared to genomics and pro-

teomics, metabolomics has revealed new metabolic path-

ways in cell biology and improved our understanding of

disease pathogenesis (Weiss and Kim 2012; Griffin et al.

2011; Patti et al. 2012a; Long et al. 2011). To enable a

better understanding of physiological and pathological
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changes related to diseases and to define biomarkers for

diagnosis, large-scale human samples are generally

required for metabolomics studies to the extent of the

epidemiological level in which thousands of samples are

studied (Wang et al. 2011; Mapstone et al. 2014; Mayers

et al. 2014). The validly large scale of human samples in

biomarker discovery studies effectively averages out sub-

stantial variations observed in the human metabolome that

are caused by differences in age, gender, diet, medication,

lifestyle, stress and many additional factors (Wang et al.

2011; Mapstone et al. 2014; Mayers et al. 2014). Recent

studies have advanced the application of the liquid chro-

matography-mass spectrometry (LC–MS) technique to

large-scale studies of human biofluid samples (such as

serum, plasma, and urine) (Wang et al. 2011; Mapstone

et al. 2014; Luan et al. 2015). The untargeted metabolic

profiling of one sample can be completed within a few

minutes, enabling an analytical throughput of[100 sam-

ples per day (Evans et al. 2009; Lv et al. 2011). This

capability of high-throughput analysis provided by LC–MS

enables to analyze thousands to tens of thousands of

samples within several months to 1 year.

However, the analysis of large-scale samples requires

that great care is taken in experimental design, data

acquisition, quality control, and subsequent data analysis.

Obviously, not all of the samples can be analyzed in a

single batch; therefore, one metabolomics study is usually

divided into several batches, and data acquisition may span

several months (Wang et al. 2011; Mapstone et al. 2014;

Mayers et al. 2014; Bijlsma et al. 2006). The signal

intensity drift of metabolites over time and across different

batches is a major confounding factor in large-scale

metabolomics studies. The unwanted variations in the

measurements of metabolite ion peaks during data acqui-

sition (intra- and inter-batch) are unavoidable and arise

from sample handling and preparation, LC column degra-

dation, matrix effects, MS instrument contamination and

nonlinear drift over long runs (Leek et al. 2010; Burton

et al. 2008; De Livera et al. 2015). Therefore, the devel-

opment of a normalization method is necessary to remove

the unwanted analytical variations occurring in intra- and

inter-batch measurements and to integrate multiple batches

forming an integral data set for subsequent statistical

analysis (De Livera et al. 2015; De Livera et al. 2012).

Effective removal of unwanted analytical variations helps

increase the power of statistical analysis so that subtle

metabolic changes in epidemiological studies can be

detected (Veselkov et al. 2011).

For this purpose, several attempts have been made in the

past several years to normalize data in large-scale meta-

bolomics studies (van der Kloet et al. 2009; Veselkov et al.

2011). One of the most common normalization methods

utilizes internal standard metabolites, which are added to

the biological subject samples before or after extraction,

for data normalization, such as ratio response (Bijlsma

et al. 2006), NOMIIS (Sysi-Aho et al. 2007) and CCMN

(Redestig et al. 2009). However, it is difficult to select one

or several internal standards to normalize all metabolites

that feature different polarities and functional groups in

metabolic profiling. In addition, overlapped chromato-

graphic peaks and ion suppression effects introduce biases

into the internal standard-based normalization method (van

der Kloet et al. 2009). Therefore, internal standards are

usually added to monitor the reproducibility of sample

preparation and LC–MS analysis, which is not an ideal

choice for data normalization. Other methods, such as sum

(Cairns et al. 2008), median (Wang et al. 2003) or L2

(Scholz et al. 2004) normalizations, use sample-wise scalar

corrections for data normalization. But these scalar cor-

rection based methods are not applicable to most metabo-

lomics experiments, as they heavily rely on the self-

averaging property (Sysi-Aho et al. 2007). The pros and

cons of all normalization methods, including internal

standard based normalization, sample-wises scalar nor-

malization, and variance based normalization (De Livera

et al. 2012; Huber et al. 2002), have been comprehensively

discussed and compared in several recent articles (van den

Berg et al. 2006; Kamleh et al. 2012; De Livera et al.

2015).

Recently, utilizing quality control (QC) samples for

data normalization become more popular (van der Kloet

et al. 2009; Dunn et al. 2011, 2012; Kamleh et al. 2012;

Wang et al. 2013). QC samples are prepared by pooling

aliquots of biological subject samples in the study that are

representative of the sample type under analysis, and then,

periodically analyzing these samples over the entire data

acquisition time course (Dunn et al. 2012). Intensity drifts

of metabolites in biological subject samples can be detec-

ted by observing the signal changes of the same metabolite

in the QC samples. For example, batch ratio based nor-

malization method uses the mean (or median) intensity of

all QC samples for each batch as correction factor to nor-

malize dataset (Kamleh et al. 2012). Alternatively, QC

sample also can be used to build regression as correction

factor. A regression model is built based on the intensity

drift of each metabolite in the QC samples and is used to

predict and correct peak intensities of the same metabolite

in subject samples. Linear (Kamleh et al. 2012; Wang et al.

2013) and non-linear (van der Kloet et al. 2009; Dunn et al.

2011) regressions are the two most common regression

methods. However, linear regression with least squares

cannot fit QC samples well, because most of the signal

drifts have non-linear changes (Fig. 1). LOESS (locally

estimated scatterplot smoothing) curve fitting regression

combines the simplicity of classical least squares-based

regression with the flexibility of nonlinear regression,
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which can fit non-linear signal drift well (van der Kloet

et al. 2009; Dunn et al. 2011). However, the principle of

local non-linear regression in LOESS-based normalization

limits its generation ability to predict the values of subject

samples, and overfitting of the training data (i.e., QC

samples) happens quite frequently in the presence of QC

sample outliers. Therefore, a good regression model for

QC-based normalization should meet two important crite-

ria: (1) accurate non-linear fitting for signal drift and (2)

excellent generation ability for predicting the values of

subject samples and robust capability of removing the

effects of outliers in training data. Both criteria can be

evaluated by reducing the relative standard deviations

(RSDs) of peaks in samples and improving classification

and predictive accuracy in subsequent multivariate statis-

tical analyses (Veselkov et al. 2011; Wang et al. 2013).

In this work, we introduce one of the most widely used

machine learning methods, support vector regression

(SVR), for the purpose of data regression in metabolomics

(Brereton and Lloyd 2010; Ren et al. 2015). SVR maintains

all of the main features that characterize the maximal

margin algorithm in the support vector machine (SVM)

algorithm (Cortes and Vapnik 1995), and a non-linear

kernel function (e.g., radial basis function) is used for

margin optimization and maximization (Steinwart and

Christmann 2008). In SVM, dependent variables are dis-

crete and the goal is to find the hyperplane which can

separate observations into different classes. But in SVR,

dependent variables are continuous and the hyperplane is

used to predict the distribution of observations (Steinwart

and Christmann 2008; Brereton and Lloyd 2010; Ren et al.

2015). Therefore, SVR normalization can accurately fit

non-linear signal drift, is not susceptible to the presence of

outliers, and thus has excellent generation capability for

prediction when compared with linear and LOESS-based

normalizations. In the past decade, the SVM method has

been used in the fields of genomics (Fujarewicz et al. 2007)

and metabolomics (Guan et al. 2009) for biomarker

selection but has not been used for normalization of large-

scale metabolomics data. By introducing the SVR method

for normalization and integration of large-scale metabo-

lomics data, the unwanted intra- and inter-batch variations

were largely reduced, and the performances of multivariate

statistical analyses, both unsupervised and supervised (e.g.,

PCA and OPLS-DA), have been largely improved in terms

of classification and prediction accuracy. In addition,

although the SVR normalization method is demonstrated

on the normalization and integration of LC–MS-based

metabolomics data in this work, the principle and method

can be easily applied to GC–MS data. Finally, an R

package named MetNormalizer was developed and pro-

vided for data processing using SVR normalization. R

package MetNormalizer is available at http://www.meta

bolomics-shanghai.org/.

Fig. 1 Comparison of data normalization methods for removing

unwanted analytical variations: a non-linear signal drift of training

samples (QC samples) during data acquisition; b–d applications of

linear (b), LOESS (c), and SVR- (d) based data normalization

methods for fitting non-linear signal drifts of training data; e signal

drift of subject samples during data acquisition; and f–h normalized

QC and subject samples using linear (f), LOESS (g), and SVR-

(h) based data normalization methods. Parameters for LOESS

normalization were set as follows: degree = 1 and span = 0.4.

SVR normalization used Gaussian RBF kernel with C = 1 and

e = 0.1. The two red dotted lines are the margin lines of the support

vectors. The selected metabolite peak is M623T423 (m/z 623.256;

retention time 423 s) (Color figure online)
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2 Materials and methods

2.1 Chemicals

LC–MS grade methanol (MeOH), water (H2O), acetonitrile

(ACN), water with 0.1 % formic acid (FA), and acetonitrile

with 0.1 % FA were purchased from Honeywell (Muske-

gon, MI, USA). Ammonium fluoride (NH4F) was pur-

chased from Sigma (St. Louis, MO, USA). Commercial

human serum sample was purchased from Equitech-Bio,

Inc (Kerrville, TX, USA).

2.2 Sample preparation and LC–MS analysis

Serum samples were extracted using Bravo liquid handling

system (Agilent Technologies, USA), and LC–MS analyses

were performed using a UHPLC system (1290 series,

Agilent Technologies, USA) coupled to a quadruple time-

of-flight (Q-TOF) mass spectrometer (Agilent 6550 iFun-

nel Q-TOF, Agilent Technologies, USA). The details are

provided in the supplementary material.

2.3 Data analysis

MS raw data (.d) files were converted to the mzXML

format using ProteoWizard, and processed by XCMS

(Smith et al. 2006; Tautenhahn et al. 2008). R package

CAMERA (Kuhl et al. 2012) was used for peak annotation

after XCMS data processing. The details of data analysis

are provided in the supplementary material.

2.4 SVR-based data normalization

SVR based machine learning method is developed for the

purpose of data regression in this work. SVRmaintains all of

the main features that characterize the maximal margin

algorithm in SVM, and has a non-linear kernel function for

margin optimization and maximization (Steinwart and

Christmann 2008;Brereton andLloyd 2010;Ren et al. 2015).

SVM method uses supervised learning models for classifi-

cation, however, it is usually called as SVR when it is used

for regression analysis. Therefore, SVR has excellent

learning and prediction abilities.A tutorial review article that

explains SVR for application in analytical chemistry has

been recently introduced (Brereton and Lloyd 2010).

The format of subject sample dataset was defined in an

S9P matrix. S stands for S subject samples and P stands for

P peaks. The format of QC sample dataset was defined as a

Q9P matrix, where Q represents Q QC samples and P

represents P peaks. The most important concept of QC

sample-based normalization is that the signal drift of peaks

in QC samples can represent instrument drift over the

injection order, and the intensity drift of the QC and subject

samples are affected by instrument drift in the same way.

In this work, an SVR model of each peak in QC samples

was first constructed. For one peak M = {xi, yi}, x is the

independent viable such as injection order, and y is

dependent viable which is the peak intensity, i = 1, 2, …,

P. Therefore, SVR function can be written as Formula (1)

shows.

f ðxÞ ¼ wUðxÞ þ b ð1Þ

w is the normal vector and U represents a non-linearity

transformation from Rn (n-dimension real number space) to

higher dimensional feature space. The goal of support

vector-based regression is to find the w and b that make the

minimum structure risk function, which is quite different

from other traditional regressions. The solution to the

optimization problem towards minimum structure risk

function can be written as Formula (2) shows.

minimize
1

2
jjwjj2 þ C

XP

i¼1

ðni þ n�i Þ

subject to

yi � f ðxiÞ � b� eþ ni

f ðxiÞ þ b� yi � eþ n�i

ni; n
�
i � 0

8
>><

>>:

ð2Þ

jjwjj is the norm of normal vector so the width of margin is

2=jjwjj: ni and n�i represent the slack variables of upper and

lower boundaries for the margin, respectively. e is the error
tolerance. To get the minimum structure risk function

which is fitted data well, so we must minimize 1
2
jjwjj2 þ

C
PP

i¼1 ðni þ n�i Þ under the prerequisites that all the data

points in training dataset (i.e., peaks in QC sample dataset)

are in the defined region. An in-depth theoretical back-

ground about SVR can be found in the literature (Steinwart

and Christmann 2008; Brereton and Lloyd 2010; Ren et al.

2015).

In this work, we selected injection order or the top most

correlated ion peaks (based on Pearson’s correlation) of QC

samples as independent variables to construct SVR func-

tion, and compared their performances on data normal-

ization. As the results shown in supplementary Fig. 1, the

use of top most correlated ion peaks as independent vari-

ables for regression is better than the use of injection order.

Therefore, in our work, we choose top five most correlated

ion peaks as independent variables for regression. There-

fore, the SVR model built on QC samples can be written as

Formula (3) shows.

f ðxQ:corÞ ¼ wUðxQ:corÞ þ b ð3Þ

xQ.cor is the top five most correlated peaks of QC samples.

Then, the built SVR model for peak M was used to predict

the intensities of the same peak in S subject samples.
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ypredict ¼ wUðxS:corÞ þ b ð4Þ

xS.cor is the same five most correlated peaks in the subjected

samples. The values of w and b are solved from Formula

(3). Finally, the intensities of each peak in the subject

samples (y) were divided by the predictive peak intensities

(ypredict) for normalization to remove unwanted intensity

drift and analytical variations during data acquisition.

Peaks in QC samples were normalized in the same way.

y0 ¼ y=ypredict ð5Þ

The SVR-based normalization used in this work has been

developed as an R package named MetNormalizer, which

is available in the supplementary and at our group website

(http://www.metabolomics-shanghai.org/). MetNormalizer

can be installed in Windows, Linux and Mac OS. The

example serum data from study 1 (see below) are also

provided. After installation of MetNormalizer, one can

learn to run MetNormalizer according to the instruction in

the help document using the example data provided.

2.5 Study designs

In this work, two metabolomics studies were designed to

evaluate the performance of the SVR-based normalization

method.

(1) Study 1 was an experiment which is used to assess

the performance of normalization methods for

removing intra-batch variations. The batch contained

37 QC samples, 288 subject samples, ten column

conditioning samples and 43 blank samples. Column

conditioning samples were injected ten times at the

beginning of analysis to equilibrate the column. The

QC samples were analyzed after every eight subject

samples in the entire batch. The detailed run order is

provided in supplementary Table 1. The entire batch

required approximately 74 h in total for LC–MS

analysis. Both the QC and subject samples consisted

of the same commercial human serum samples.

(2) Study 2 was a large-scale metabolomics study that

aimed to discover metabolite biomarkers for early

diagnosis of esophagus cancer. The study was

approved by the ethics committee of Shandong Cancer

Hospital affiliated to Shandong University, and written

informed consents were obtained from all participants

involved in this study. There were 768 human serum

samples in this study, and basic metrics regarding the

cohort are provided in supplementary Table 2. All of

the serum samples were collected at the Tumor

Preventative and Therapeutic Base of Shandong

Province (Feicheng People’s Hospital), and the

participants were screened using endoscope and iodine

staining for esophagus cancer (golden standard for

diagnosis of esophagus cancer). The participants were

divided into two classes according to their reaction to

iodine staining: screening positive and screening

negative. Screening positive patients further received

histopathology diagnosis to confirm cancer progres-

sion stages. Serum samples were analyzed using the

LC–MS method described above. All of the 768

sampleswere randomly divided into four batches. Each

batch contained 192 subject samples, 25 QC samples,

ten column conditioning samples, and 31 blank

samples. The running order within each batch was

also randomized. One batch required approximately

52 h in total for either positive or negative MS

analyses. The analyses of the four batches spanned

approximately 2 months, including instrument main-

tenance and unexpected repairs. The detailed run order

is provided in supplementary Table 3. This study was

used to evaluate the performance of the SVR-based

normalization method to remove inter-batch variations

and to assess the improvement in the accuracy of

statistical analyses after data normalization.

3 Results and discussion

To demonstrate the excellent performance of the SVR

method for normalization and integration of large-scale

untargeted metabolomics data, we designed two studies in

this work (see theMaterials andmethods section for details).

3.1 Removal of unwanted variations using

SVR-based normalization

SVR can effectively remove unwanted analytical variations

during data acquisition compared with other QC-based

regression methods such as linear and LOESS regressions.

For the purpose of data normalization, a regression model

was first built based on the intensity drift of each

metabolite using training data (i.e., QC samples) (Fig. 1a–

d). Then, the intensities of the same peaks in subject

samples were predicted. Therefore, the unwanted analytical

variations during data acquisition for each peak were

removed. A commonly adapted criterion to assess the

reproducibility of bioanalytical methods provided by the

FDA is that the relative standard deviation (RSD) for a

single analyte test should be within 15 % of QC samples

(FDA 2013). In biomarker discovery studies, peaks with

RSDs less than 30 % are typically accepted (Wang et al.

2013). Therefore, having RSDs less than 30 % was adopted

as one of the most important criteria for performance

evaluation of normalization methods.
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As shown in Fig. 1, a peak (M623T423: m/z 623.256;

retention time 423 s) was chosen as an example to

demonstrate the non-linear signal drift over the injection

order during data acquisition. The RSDs of this peak were

48.5 and 52.7 % in QC and subject samples, respectively,

highlighting the large analytical variations between the

samples (Fig. 1e). Here, we applied linear, LOESS and

SVR normalization methods to fit the signal drift and cal-

culated the RSDs of the M623T423 peak in QC and subject

samples after data normalization (Fig. 1f–h). In general,

the linear regression did not fit the signal drift in the QC

samples very well (Fig. 1b). Therefore, RSDs for the

M623T423 peak in the QC and subject samples slightly

decreased to 35.8 and 36.2 %, respectively, after linear

normalization (Fig. 1f), larger than the acceptable level

recommended by the FDA. LOESS normalization fitted the

signal drift in the QC samples better than linear normal-

ization (Fig. 1c), as indicated by the significant decrease in

the RSD of QC samples from 48.5 to 18.0 % (Fig. 1g).

However, LOESS normalization had a limited generation

capability for subject samples. The RSD of subject samples

only decreased from 52.7 to 33.1 % (Fig. 1g), which is still

higher than the acceptable level. The results showed that

LOESS normalization has a good capability to fit non-

linear signal drift and reduce variations in QC samples but

has a relatively poor generation capability because varia-

tions between the subject samples could not be effectively

removed.

In contrast, SVR had excellent generation capability and

robustness (Fig. 1d, h). SVR normalization fit the signal

drift in the QC samples well, as indicated by the significant

decrease in the RSDs of the M623T423 peak in the QC

samples from 48.5 to 8.2 %. Additionally, SVR normal-

ization also effectively reduced the RSDs of the

M623T423 peak in the subject samples from 52.7 to

14.5 % (Fig. 1h), highlighting the excellent generation

capability of SVR normalization. In the metabolomics

data, the QC outliers greatly influence the accuracy of non-

linear fitting and are deleterious to perform normalization.

When SVR fits the signal drift of the QC samples, it uses

the margin lines to define the non-linear signal drift with

extended tolerance to outliers and errors (such as the red

dashed lines in Fig. 1d). Therefore, compared with LOESS

normalization, SVR is not susceptible to QC outliers,

which makes it more robust for data normalization and

more effective at removing unwanted variations. Other

examples to demonstrate that the SVR normalization can

normalize different kinds of signal drifts are provided in

supplementary Fig. 2. These results showed that SVR

normalization can successfully remove unwanted varia-

tions in measurements of individual metabolites in both

QC and subject samples compared with linear and LOESS

normalization methods.

We further evaluated the overall performance of the

SVR normalization method for normalization of the entire

data set for study 1. After untargeted metabolomics pro-

filing, there were 8413 ion peaks (or called feature)

detected by XCMS in total. After XCMS processing,

CAMERA was used to annotate the ion peaks. Ion peaks

such as isotopic ions, adduct ions, multiple charged ions,

and un-annotated ion were removed and discarded for

further analysis. As a result, 1197 monoisotopic ion peaks

(most are metabolite ion peaks) were chosen for data

normalization and subsequent statistical analysis, and

referred as ‘‘metabolite ion peaks’’. The RSDs of each

metabolite ion peak are shown as two-dimensional heat

plots in Fig. 2a-d. In the heat plots, each point represents a

metabolite ion peaks and the colors indicate the scale of the

RSDs, with red representing lower RSDs. Clearly, a small

portion of the metabolite ion peak achieved lower RSDs

after linear and LOESS normalizations (Fig. 2b, c) com-

pared with the raw data (Fig. 2a). The median RSD of the

raw data only slightly decreased from 27.2 (IQR:

19.6–41.7 %) to 24.7 % (IQR: 18–37.8 %) and to 20.4 %

(IQR: 15.3–32.8 %) after linear and LOESS normaliza-

tions, respectively. As a comparison, the RSDs of peaks

were significantly decreased across the entire range using

the SVR normalization method (Fig. 2d). The medium

RSD significantly decreased to 9.7 % (IQR: 5.5–19.0 %)

after SVR data normalization. Further data analysis showed

that 1194 of 1197 metabolite ion peaks, as much as 99.7 %,

had decreased RSDs after SVR normalization (Fig. 3a).

In the raw data, 677 of 1197 metabolite ion peaks

(56.6 %) had RSDs less than 30 %. After linear and

LOESS normalizations, the percentages increased to 62.7

and 75.5 %, respectively (Fig. 2e, f). However, the per-

centage of peaks with RSDs less than 30 % significantly

increased to 90.7 % after SVR normalization (Figs. 2h,

3b). Therefore, qualified numbers of metabolite ion peaks

(i.e., RSDs\ 30 %) for subsequent statistical analyses

increased from 677 to 751, 904, and 1086 after linear,

LOESS, and SVR normalizations, respectively. More

importantly, after SVR normalization, the proportion of

peaks with RSDs less than 10 % achieved the largest

percentage, as high as 50.8 % of the total peaks. As a

comparison, the proportions of peaks with RSDs less than

10 % were only 4.0 and 8.9 % after linear and LOESS

normalizations, respectively (Figs. 2e–h, 3b). Furthermore,

we evaluated the performance of SVR normalization for

different abundant peaks, as shown in Fig. 3c, d. After

SVR normalization, the proportion of peaks with RSDs less

than 30 % was increased in peaks in a very broad range

regardless of peak intensities (Fig. 3c, d and supplementary

Table 4). The results demonstrated that the SVR normal-

ization reduced the RSDs of metabolite ion peaks inde-

pendently from peak intensities.
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We further compared SVR normalization against com-

monly used sample-wise scalar correction based normal-

ization, such as sum normalization, and other QC-based

batch ratio normalization (Fig. 2i–n). Sum normalization

uses the total intensity of all peaks in one sample as cor-

rection factor. Batch ratio based normalization method uses

the mean (or median) intensity of all QC samples for each

batch as correction factor. Here, both batch ratio (mean)

and batch ratio (median) methods are compared. After sum

and batch ratio (mean and median) normalizations, the

percentages of metabolite ion peaks with RSDs less than

30 % are 59.7, 56.6 and 56.6 %, respectively (Fig. 2i–n).

Fig. 2 The distributions of the RSDs of metabolite ion peaks after

data normalization. a–d, i–k Two-dimensional heat plots of peaks

before and after data normalization: raw data (a), after linear

normalization (b), after LOESS normalization (c), after SVR

normalization (d), after sum normalization (i), after batch ratio

(mean) normalization (j), and after batch ratio (median) normalization

(k). Each point represents a metabolite ion peak, and the colors

indicate the scale of the RSD. e–h, l–n Bar plots of the RSD

distributions across all samples: raw data (e), after linear normaliza-

tion (f), after LOESS normalization (g), after SVR normalization (h),
after sum normalization (l), after batch ratio (mean) normalization

(m), and after batch ratio (median) normalization (n)
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The little changes indicate these methods cannot reduce

analytical variations during metabolomics analysis.

Principal component analysis (PCA) is a commonly

used unsupervised statistical method that can measure the

similarity of samples through the tightness of sample

clustering in PCA score plots. Here, we used a PCA score

plot to evaluate the reproducibility of metabolomics data in

study 1 and compared the performance of different data

normalization methods. As shown in Fig. 4, after SVR

normalization, QC and subject samples cluster much more

tightly than the raw data, linear normalization, and LOESS

normalization. We also calculated the median distances of

QC and subject samples in PCA score plot to quantitatively

evaluate the tightness degree of the clustering. The values

for median distances are provided in supplementary

Table 5. In brief, the median distance of QC samples

decreased from 22.3 to 1.68 after SVR normalization.

Similarly, the median distance between subject samples

decreased from 22.9 to 5.12 after SVR normalization. As a

comparison, the median distance of QC samples slightly

decreased from 22.3 to 18.9 and 15.9 after linear and

LOESS normalizations, respectively. Both QC and subject

samples clustered much more tightly after SVR normal-

ization compared with linear and LOESS normalizations,

which indicates the excellent generation capability of SVR

normalization. Therefore, we conclude that the SVR nor-

malization method can significantly remove unwanted

analytical variations and improve data reproducibility.

As a comparison, after sum and batch ratio (mean and

median) normalizations, the median distances of QC

samples in PCA plots are 22.4, 22.3 and 22.3, respectively

(Fig. 4e–g and supplementary Table 5). And the median

distances of subject samples in PCA plots are 22.3, 22.9

and 22.9, respectively (Fig. 4e–g and supplementary

Table 5). The median distances are not changed after data

normalization compared to raw data (22.3 for QC sample,

and 22.9 for subject samples), and the results are consistent

with the previous RSD reduction results, proving that these

methods cannot reduce unwanted analytical variations

during analysis.

3.2 Normalization and integration of multiple

metabolomics datasets

One large-scale metabolomics study has to be divided into

several batches, and data acquisition may span as long as

several months to years (Bijlsma et al. 2006). The signal

intensity drift across different batches is another major

confounding factor for metabolomics studies. Here, we

designed metabolomics study 2 to demonstrate that SVR

normalization can successfully remove inter-batch varia-

tions and integrate multiple batches from one laboratory to

form an integral dataset for subsequent statistical analysis.

The 768 subject samples and 100 QC samples that were

divided into four batches were processed together by

XCMS. There were 9976 and 3592 metabolic features in

positive and negative modes, respectively. After CAMERA

annotation, there were 1024 and 497 metabolite ion peaks

in positive and negative modes, respectively. Then,

metabolite ion peaks in positive and negative modes were

combined (1521 metabolite ion peaks in total) and sub-

jected to SVR-based data normalization to remove inter-

batch variations.

First, we utilized the PCA score plot to assess the per-

formance of SVR normalization to remove inter-batch

variations. As shown in the PCA score plot (Fig. 5a), the

subject samples were distributed in four different clusters

before data normalization. However, after SVR normal-

ization, the subject samples from the four batches were

clustered tightly in the PCA score plot (Fig. 5b). All of the

QC samples from the four batches cluster very tightly.

These results show that the inter-batch variations are

effectively removed after data normalization.

Secondly, auto-scaled intensity plots were also used to

visualize the reduced inter-batch variations after SVR

normalization. Each of the 1521 peaks was subtracted by

mean (also known as centering) and divided by standard

deviation all of the QC samples in the four batches (van

den Berg et al. 2006). Thus, all of the peaks had the same

unit scale. Then, box plots were prepared to describe the

standard deviations (SDs) of the peaks in each QC sample.

If the inter-batch variations were removed, then the box

plots for the QC samples of these centered peaks should

Fig. 3 The performance of SVR normalization for reducing varia-

tions of metabolite ion peaks. a The change in RSDs in QC samples

after SVR normalization. b The RSD distributions after different

normalization methods. c, d The RSD distributions for different

abundant peaks: raw data (c) and after SVR normalization (d)
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have a mean close to zero with small variations around the

mean. As shown in Fig. 5c, d, the standard deviations of

the peaks in the QC samples were largely reduced after

SVR normalization.

Finally, the percentage of peaks with RSDs less than

30 % were also calculated before and after SVR normal-

ization. As shown in the cumulative RSD curves (Fig. 5e)

and RSD distribution bar plots (Fig. 5f), the proportion of

peaks with RSDs less than 30 % increased significantly to

1421 peaks (93.5 %) after SVR normalization compared

with the raw data (499 peaks, 32.8 %). The proportion of

peaks with RSDs less than 10 % achieved the largest

percentage after SVR normalization, with as many as

48.6 % of the total peaks (739 peaks). In contrast, in the

raw data, the proportion of peaks with RSDs less than 10 %

was only 2.1 % of the total peaks (32 peaks). These results

demonstrated that SVR normalization can successfully

remove variations and integrate multiple batches into one

integral dataset.

3.3 Improved classification accuracy

with multivariate statistical analysis

The SVR-based data normalization method effectively

reduces unwanted analytical variations and improves the

power of statistical analyses so that subtle metabolic

changes in metabolomics studies can be detected. Here, we

used metabolomics study 2 as an example to demonstrate

how the SVR normalization method improves classification

and predictive accuracy in biomarker discovery. Study 2

had 768 subject serum samples, with 236 and 532 screen-

ing negative and positive samples, respectively.

First, we utilized a supervised multivariate analysis

method (partial least squares, PLS) to select potential

biomarkers that can distinguish between screening negative

and positive subject samples in study 2. After PLS analysis,

each of the 1521 metabolite ion peaks had a calculated

value called variable importance in projection (VIP) to

assess its contribution to classification. Higher VIP values

indicate higher contribution; therefore, we selected the top

30 ranked peaks as potential biomarkers according to their

VIP value ranks in the raw data and the data after SVR

normalization (supplementary Tables 6, 7). Then, the 30

peaks were used as independent variables to construct the

discrimination analysis model to demonstrate their perfor-

mance on classification. Here, orthogonal partial least

squares-discrimination analysis (OPLS-DA) was performed

to visualize the classification performance, as shown in

Fig. 6a, b. It was clear that the 30 peaks selected in the raw

data did not well separate the screening positive and neg-

ative groups. The values of R2X and Q2cum for the raw data

in the OPLS-DA model were 0.6 and 0.59, respectively. On

the contrary, after SVR data normalization, the screening

positive and negative groups were distinguished very well

Fig. 4 PCA score plots obtained from the raw data (a), after linear
normalization (b), after LOESS normalization (c), after SVR

normalization (d), after sum normalization (e), after batch ratio

(mean) normalization (f), and after batch ratio (median) normalization

(g). Red circles represent the QC samples, and blue triangles

represent the subject samples (Color figure online)
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by the 30 selected peaks. The values for R2X and Q2cum

significantly increased to 0.99 and 0.99, respectively. We

then use PLS-DA with double cross validation (Rosenberg

et al. 2010) to construct receiver operating characteristic

curves (ROCs) for raw and SVR normalized datasets

(Fig. 6c; supplementary Fig. 4). The areas under the curves

(AUCs) were 0.869 and 0.945 for the raw and SVR nor-

malized datasets, respectively. This demonstrated that the

SVR normalization can significantly improve the predictive

accuracy of metabolomics datasets. In addition, we further

compared the VIP values, p values (after FDR correction)

and RSDs of selected 30 potential markers before and after

SVR normalization (supplementary Fig. 3 and supplemen-

tary Table 8). Compared to raw data, most of metabolite

markers have increased VIP values, decreased p values and

RSDs after SVR normalization. These results indicated that

SVR normalization can help select the effective potential

markers by removing unwanted variations and improving

the classification and predictive accuracy of multivariate

statistical analysis.

4 Concluding remarks

In large-scale metabolomics studies, the signal drift of

metabolites during data acquisition (intra- and inter-batch)

is a major confounding factor that affects the accuracy of

subsequent statistical analyses for biomarker discovery

purposes. In this work, we introduced a machine learning

algorithm-based normalization method, SVR normaliza-

tion, which accurately fit non-linear signal drift and had

excellent capacity for data regression and normalization.

The SVR normalization method effectively removed the

Fig. 5 The performance of SVR normalization for removing inter-

batch variations and integrating multiple metabolomics datasets. a,
b The PCA score plots of metabolomics datasets in study 2 before and

after SVR normalization. c, d The auto-scaled intensity box plots

before and after SVR normalization. e The cumulative RSD curves of

QC samples before and after SVR normalization. f The RSD

distribution bar plots before and after SVR normalization

Fig. 6 Improved classification and predictive accuracy with multi-

variate statistical analysis after SVR data normalization. a, b The

OPLS-DA score plots using 30 metabolite ion peaks selected

according to VIP values before and after SVR normalization. c The

receiver operating characteristic curve (ROC) before and after SVR

normalization
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intra-batch and inter-batch variations during LC–MS

analysis and enhanced the power of statistical analysis for

biomarker discovery purposes. After SVR data normal-

ization, the proportion of metabolite ion peaks with RSDs

less than 30 % significantly increased to greater than 90 %

of the total peaks, which is much better than other nor-

malization methods such as linear and LOESS normaliza-

tions. Accurate selection of potential metabolite

biomarkers by removing unwanted variations can improve

classification accuracy using multivariate statistical analy-

ses such as PCA and PLS-DA. The area under the curve

(AUC) increased from 0.869 (raw dataset) to 0.945 (SVR

normalized dataset), and this result showed that SVR nor-

malization can significantly improve the predictive accu-

racy of statistical analyses.
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