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Purpose: The present study aimed to identify a panel of potential metabolite biomarkers to predict tumor
response to neoadjuvant chemo-radiation therapy (NCRT) in locally advanced rectal cancer (LARC).
Experimental design: Liquid chromatography–mass spectrometry (LC–MS)-based untargeted metabolo-
mics was used to profile human serum samples (n = 106) from LARC patients treated with NCRT. The
samples were collected from Fudan University Shanghai Cancer Center (FUSCC) from July 2014 to
January 2016. Statistical methods, such as partial least squares (PLS) and Wilcoxon rank-sum test, were
used to identify discriminative metabolites between NCRT-sensitive and NCRT-resistant patients accord-
ing to their tumor regression grade (TRG). This trial is registered with Clinical Trials.gov, number
NCT03149978.
Results: A panel of metabolites was selected as potential predictive biomarkers of pathological response
to NCRT. A total of 4810 metabolic peaks were detected, and 57 significantly dysregulated peaks were
identified. These 57 metabolic peaks were used to differentiate patients using PLS in a dataset containing
NCRT-sensitive (n = 56) and NCRT-resistant (n = 49) patients. The combination of 57 metabolic peaks had
AUC values of 0.88, 0.81 and 0.84 in the prediction models using PLS, random forest, and support vector
machine, respectively, suggesting that metabolomics has the potential ability to predict responses to
NCRT. Furthermore, 15 metabolite biomarkers were identified and used to construct a logistic regression
model and explore dysregulated metabolic pathways using untargeted metabolic profiling and data min-
ing approaches.
Conclusions: A panel of metabolites has been identified to facilitate the prediction of tumor response to
NCRT in LARC, which is promising for the generation of personalized treatment strategies for LARC
patients.
� 2018 The Author(s). Published by Elsevier B.V. Radiotherapy and Oncology 128 (2018) 548–556 This is
an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
For locally advanced rectal cancer (LARC) patients, preoperative
neoadjuvant chemo-radiation therapy (NCRT) followed by total
mesorectal excision (TME) is the standard treatment [1–3]. Previ-
ous studies have shown that NCRT has better local control and
lower toxicity than adjuvant chemoradiotherapy [4–6]. In clinical
practice, however, pathological responses to NCRT demonstrated
obvious heterogeneity. Approximately 10–30% of patients show
pathologic complete response, 40–45% show variant tumor regres-
sion, and the remaining 20–30% have no response to NCRT [7–9].
Therefore, more cost-effective, predictive biomarkers of NCRT for
LARC patients are needed to maximize patient benefits and mini-
mize adverse effects.

To date, the pathological tumor response to NCRT has been
evaluated using imaging of tumor morphology. Monguzzi L et al.
reported that the mean value of the apparent diffusion coefficient
from MRI could be used to predict the pathological response to
NCRT [10], which was confirmed by Genovesi D et al. in a single-
site prospective study [11]. Similarly, Zhang et al. reported the
use of the standardized uptake value from positron emission
tomography (PET) scans to assess the pathological response of
LARC patients to NCRT [12]. However, the changes in tumor mor-
phology typically occur later than the changes at the biological
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and molecular levels. Therefore, image diagnosis is not an ideal
method to evaluate the NCRT sensitivity at early stages and cannot
accurately predict therapeutic responses prior to NCRT.

With recent advancements in molecular and systems biology,
molecular biomarkers have been discovered to predict the
response of rectal cancer patients to NCRT. Huh et al. reported that
high levels of CD44 mRNA in pretreatment biopsies are associated
with a poor tumor regression [13]. Yan et al. reported that patients
with high Smac levels, low Ki-67 expression and negative vascular
endothelial growth factor (VEGF) expression are more sensitive to
NCRT [14]. Kim et al. reported that the candidate markers CORO2A
rs1985859 and the putative marker FAM101A rs7955740 are valu-
able to predict sensitivity to NCRT [15]. These three studies focused
on investigating the association between the specific molecular
markers or single-nucleotide polymorphisms (SNPs) of genes and
the pathological response to NCRT. However, the generalization
of these studies is limited by a wide confidence interval of the pre-
diction, a retrospective study design or a small sample size. In
addition, these results explored only the association rather than
the predictive capability of these biomarkers toward the therapeu-
tic response of NCRT in LARC patients.

Metabolomics provides the global and quantitative measure-
ment of endogenous small molecular metabolites within a biolog-
ical system [16–18] and is well acknowledged in cancer research
[19–21]. Metabolomics simultaneously measures thousands of
metabolites, and describes a holistic and dynamic profile of disease
progression [22]. Currently, metabolomics has been successfully
utilized in biomarker discovery for the early diagnosis of cancer,
targeted therapy and response prediction [23–27]. Studies con-
firmed the feasibility of metabolic markers in early diagnosis of
colorectal cancer. Wei J et al. analyzed the serum samples of col-
orectal cancer patients and non-cancer subjects. Oleamine, pyruvic
acid, three carboxylic acid and ornithine cycle related metabolites,
which are closely associated with the occurrence of colorectal can-
cer, were identified as differentially expressed markers between
colorectal cancer patients and non-intestine cancer patients [28].
In their subsequent study with a larger sample size, urine samples
were analyzed to make early diagnosis of colorectal cancer and dif-
ferentially expressed metabolic markers, including cresol and
aminobutyric acid, etc. were screened out. The area under the
receiver operating characteristic (ROC) curve was 0.998 in the test
sample, while the diagnostic sensitivity and specificity of serum
CEA in colorectal cancer is only about 50–70% [29]. Uchiyama
et al. successfully distinguished patients between colorectal cancer
and intestinal adenoma by the screened serum metabolic markers
[30]. However, to the best of our knowledge, no studies have
reported the use of metabolite biomarkers for predicting response
to NCRT at a personalized level.

In the present study, we designed a prospective cohort study of
locally advanced rectal cancer to identify potential metabolite
biomarkers for the prediction of tumor response to NCRT. The
cohort recruitment began in July of 2014, with a target enrollment
of 300 patients. For each patient, serum and urine samples before
and during preoperative chemo-radiation therapy were obtained
for metabolomics. Here, we report the results from the first 106
patients who were prospectively recruited in the study.
Materials and methods

Eligibility criteria

Between July 2014 and January 2016, a total of 106 patients
with clinical T3-4 and/or N+ rectal cancer without distant metasta-
sis were enrolled at Fudan University Shanghai Cancer Center
(FUSCC). The following inclusion criteria were considered: (1)
patients scheduled to receive CRT followed by TME surgery; (2)
without metabolic diseases, such as diabetes mellitus or hyperthy-
roidism; and (3) informed consent was signed and obtained before
the treatment. The CRT included intensity-modulated radiation
therapy (IMRT) of 50 Gy in 25 fractions concurrently with
capecitabine-based chemotherapy. Two weeks after the comple-
tion of CRT, one additional cycle of chemotherapy was adminis-
tered according to the guidelines of the center. Surgery was
scheduled at 8 weeks after the completion of CRT. TME was
mandatory, whereas the form of surgery (anterior resection or
abdominal-perineal resection) and whether a temporary colost-
omy should be performed were decided by the surgeon. The study
was approved by the institutional review board of FUSCC.
Pathological evaluation of tumor response

Pathological tumor response was evaluated according to the
2010 American Joint Committee on Cancer (AJCC) tumor regression
grade (TRG) system, which recorded the degree and the volume of
residual primary tumor cells. Details of AJCC TRG system are
defined as follows: Grade 0, defined as no viable cancer cells; Grade
1, characterized by single or small groups of tumor cells; Grade 2,
involves residual cancer outgrown by fibrosis, but fibrosis still pre-
dominates; and Grade 3, defined as the minimal or no tumor cells
killed. The NCRT-sensitive patients were defined as those with TRG
Grades 0–1, while the NCRT-resistant patients were defined as
those with TRG Grades 2–3.
Collection of serum samples

According to a published protocol [31], biological samples of the
enrolled patients were collected in five consecutive time-points:
baseline (within two weeks before beginning of CRT); early-
phase CRT (5 fractions after beginning); middle-phase CRT (15
fractions after beginning); late-phase CRT (25 fractions after begin-
ning); and surgery (within 2 days before surgery). All participants
were in an overnight fasting state, and 5 mL of peripheral venous
blood was drawn in the morning. The blood was allowed to clot
for 30 min, followed by centrifugation at 3000 rpm for 15 min.
Then the serum supernatant was collected, separated into 5 ali-
quots (200 lL of each aliquot) and immediately frozen in liquid
nitrogen. The serum samples were then stored at �80 �C until fur-
ther analyses. However, only baseline serum samples were ana-
lyzed in the current study.
Reagents and materials

LC–MS-grade water (H2O), acetonitrile (ACN), methanol
(MeOH), 0.1% formic acid (FA) in water and 0.1% FA in ACN were
purchased from Honeywell (Muskegon, MI, USA). Ammonium flu-
oride (NH4F) was purchased from Sigma-Aldrich (St. Louis, MO,
USA) and dissolved in LC–MS-grade water prior to use.
Serum sample preparation

The details of serum sample preparation, LC–MS analysis, data
processing and preparation have been described in a previous pub-
lication [31] and are provided in the Supporting Information.
LC–MS analysis

All serum samples were randomly injected during data acquisi-
tion. During data acquisition, blank samples (75% methanol in
water) and QC samples (prepared by pooling aliquots of all subject
samples) were injected every 8 samples, and the test mixture
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(mixture of three internal standards) was injected every 20 sam-
ples to monitor the reproducibility of LC–MS system (Fig. S1).

The LC–MS analysis was performed using a UHPLC system
(1290 series, Agilent Technologies, California, Santa Clara, USA)
coupled to a quadruple time-of-flight (QTOF) mass spectrometer
(Agilent 6550 iFunnel QTOF, Agilent Technologies, USA) in positive
mode. Tandem mass spectrometry (MS/MS) data acquisition was
performed using another QTOF mass spectrometer (TripleTOF
6600, SCIEX, CANADA). The details of LC–MS analysis are provided
in the Supporting Information.

Data processing and data preparation

MS raw data (.d) files were converted to the mzXML format
using ProteoWizard and processed using R package XCMS (version
3.2) [32,33]. The processing results generated a data matrix that
consisted of the retention time (RT), mass-to-charge ratio (m/z)
values, and peak abundance. R package CAMERA [34] was used for
peak annotation after XCMS data processing. Metabolic peaks
detected less than 80% [35] in all the QC samples were discarded.
To remove the unwanted analytical variations occurring intra-
and inter-batches, each metabolic peak in all subject samples
was normalized using R package MetNormalizer [31]. Metabolic
peaks with RSDs larger than 30% in QC samples were removed
from the dataset.

Data quality assessment

The data quality was evaluated using the test mixture, which
comprised three internal standards (Table S2) and was used to
evaluate the status of the LC–MS system during data acquisition.
The detailed information is provided in the Supporting
Information.

Metabolite identification

The acquired MS/MS spectra were matched against an in-house
standard MS/MS spectral library and online METLIN MS/MS spec-
tral database for metabolite identification [36]. The metabolic
peaks that were not matched in the database were further ana-
lyzed manually using the characteristic fragment ions. The detailed
information is provided in the Supporting Information. Finally, the
identifications were designated as levels 1, 2, 3, 4 and unknown
according to the MSI (Metabolomics Standard Initiative) [37].

Statistical analyses

The categorical data are described as the frequency counts and
percentages, and the values of all continuous variables are pre-
sented as the mean plus or minus the standard deviation. Compar-
isons between the patient characteristics in the NCRT-sensitive and
-resistant patients were performed using Pearson’s chi-square test
(discontinuous variable) or Student’s t test (continuous variables).

Partial least squares (PLS, R package ‘‘pls”) analysis was used to
understand global metabolic changes between NCRT-sensitive and
-resistant patients, and corresponding variable importance in the
projection (VIP values) were calculated in PLS model. Metabolic
peaks with VIP larger than 1 were considered potential biomarkers
for further study. A validation plot was used to assess the validity
of PLS model by comparing the goodness of fit (R2 and Q2) of the
PLS models with the goodness of fit of 200 Y-permutated models.

Unsupervised analysis, principle component analysis (PCA, R
function ‘‘prcomp”) and hierarchical cluster analysis (HCA, R pack-
age ‘‘pheatmap”) were also utilized to understand global metabolic
changes between NCRT-sensitive and -resistant patients.
Most metabolic peaks showed right-skewed distribution
(Fig. S6); thus, the nonparametric Wilcoxon rank-sum test and
the median fold-change between two groups were used to select
the potential biomarkers. Metabolic peaks with P < 0.05 and
extreme fold-change (fold-change values greater than the
99.75th percentile or less than the 0.25th percentile of all fold-
change values) were identified.

Four statistical models, PLS (R package ‘‘pls”), random forest (R
package ‘‘randomforest”), support vector machine (SVM) (R package
‘‘e1071”) and logistic regression (R function ‘‘glm”) were used to
build prediction models. The bootstrap method was used to mini-
mize the bias and improve the precision of prediction [38]. Briefly,
105 randomly sampled patients from the dataset sample with
replacement (about 63% of the patients in average) were selected
as discovery data to build the prediction model. The remaining
about 37% of the patients in average were used as validation data.
Notably, there is no overlap between discovery and validation data.
The area under receiver operating characteristic (ROC) curve (AUC)
(R package ‘‘pROC”) was used to evaluate the performance of the
prediction model. This procedure was repeated 1,000 times, and
the median of AUCs was regarded as the final AUC. The 0.25th
and 99.75th percentiles were used to calculate the 95% confidence
interval (95% CI). All statistical analyses were performed using R
software (version 3.1.3) [39].
Results

Characteristics of enrolled patients

In this prospective study, patient A092a was considered an out-
lier and was removed from the dataset (Fig. S3a and S3b); there-
fore, a total of 105 subject samples were used for subsequent
statistical analysis. Among the patients who underwent NCRT fol-
lowed by TME surgery, 56 were NCRT sensitive, and 49 were NCRT
resistant (Table 1 and Fig. 1d). Detailed clinical characteristics for
the participants are shown in Table 1 and Table S3. No significant
differences were observed regarding sex, age, BMI, distance from
anal verge, length, clinical T stage, clinical N stage, and TRG
between the two groups (P > 0.05).
Metabolic profiles of serum samples

In the present study, all serum samples were obtained from
patients prior to NCRT. A total of 4810 metabolic peaks in positive
mode were detected using the untargeted metabolomics approach.
The base peak chromatograms (BPC) of the NCRT-sensitive patients
(Fig. 1a) and NCRT-resistant patients (Fig. 1b) showed no differ-
ences. A two-dimensional heat plot was used to visualize the dis-
tribution of 4810 metabolic peaks (Fig. 1c). The X-axis and Y-axis
indicate the retention time (minutes) and mass-to-charge ratio
(m/z), respectively, while the colors indicate the intensities with
a log10 scale. The PLS score plot was demonstrated to visualize
the classification performance of the metabolic profiles (Fig. 1e).
From the PLS score plot, NCRT-sensitive and -resistant patients
could be clearly discriminated, and 1661 metabolic peaks with
VIP larger than 1 were considered potential biomarkers (Fig. 1f)
and studied in the subsequent analyses.
Discovery of discriminative metabolites

For 1661 metabolic peaks with VIP larger than 1, Wilcoxon
rank-sum test was employed to determine a subset of metabolic
peaks with the highest and independent capability to predict the
pathological response prior to NCRT. A total of 197 metabolic peaks
with VIP >1 and P < 0.05 were selected (Fig. 2a), which can also



Table 1
Clinical characteristics of NCRT-sensitive and NCRT-resistant patients.

Neoadjuvant
chemotherapy (NCRT)

P value

Sensitive Resistant

Patient number 56 49 –
Sex, male, n (%) 41 (73.2%) 28 (57.1%) 0.1273a

Age (median, min–max)
BMI 23.0 ± 2.8 22.4 ± 2.8 0.2649b

Distance from anal verge (median, cm), 5.2 ± 1.9 5.0 ± 1.7 0.5145b

Length (median, cm) 5.5 ± 1.8 5.3 ± 1.9 0.9869b

TRG
0 26 – –
1 30 – –
2 – 43 –
3 – 6 –
Clinical T stage 0.9700a

T3 48 42
T4 8 7
Clinical N stage 0.7396a

N0 1 2
N1 24 19
N2 31 28

a Chi-squared test.
b Student t test.
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effectively discriminate NCRT-sensitive and NCRT-resistant
patients in the PLS analysis (Fig. 2b). Two unsupervised multivari-
ate analysis approaches, PCA (Fig. 2c) and HCA (Fig. 2d), were also
used to observe the performance of 197 metabolic peaks discrim-
inating NCRT-resistant patients from most NCRT-sensitive
patients.
Fig. 1. Metabolic profiles of LARC patients. (a, b) The base peak chromatograms (BPC) of t
dimensional heat plot of metabolic peaks: x-axis is retention time (minute), y-axis is mass
scale. (d) The distribution of TRG scores: TRG 0 and TRG 1 patients are grouped as the N
group. (e) Multivariate analysis PLS was used to observe the overall metabolic profile. (f)
red).
However, the presence of 197 metabolic peaks would be chal-
lenging for clinical diagnosis. Then, the fold-change (NCRT-
resistant patients divided by NCRT-sensitive patients) was further
used to filter the significantly changed metabolic peaks. The cutoff
of the fold-change values was set as larger than 1.2 or less than
0.83. As a result, 57 out of 197 metabolic peaks were selected
(Fig. 3a) with 26 increasing and 31 decreasing in NCRT-resistant
patients. The 57 metabolic peaks could also discriminate most
NCRT-resistant patients from NCRT-sensitive patients in PLS score
analysis (Fig. 3b). Next, we evaluated the power of predictive
model using the bootstrap method (see Materials and Methods).
The combination of these 57 metabolic peaks had AUC values of
0.87 (95% CI 0.75–0.96), 0.83 (95% CI 0.67–0.95) and 0.85 (0.73–
0.94) in the PLS, random forest, and SVM prediction models,
respectively. To avoid the over-fitting effect, we utilized two
strategies. First, we randomly selected 57 metabolic peaks as refer-
ence peaks and built prediction models (Fig. S4d), and the AUC val-
ues were 0.55 (95% CI 0.45–0.68), 0.56 (95% CI 0.44–0.69) and 0.55
(0.45–0.67) in the PLS, random forest, and SVM prediction models,
respectively. Second, we utilized the 57 metabolic peaks with the
permutated Y labels of patients to build prediction models
(Fig. S4e), and the AUC values were 0.58 (95% CI 0.44–0.73), 0.64
(95% CI 0.46–0.79) and 0.61 (0.45–0.77) in the PLS, random forest,
and SVM prediction models, respectively. These results demon-
strated that the prediction models with 57 metabolic peaks are
not over-fitting.

Stepwise selection of potential metabolite biomarkers

We manually analyzed and evaluated the 57 discriminative
metabolic peaks, and 19 metabolic peaks without good peak
he serum samples from NCRT-sensitive (a) and NCRT-resistant patients (b). (c) Two-
to charge ratio (m/z), and the colors indicate the scale of peak intensity with a log10
CRT-sensitive group, while TRG 2 and 3 patients are grouped as the NCRT-resistant
Two-dimensional heat plot of metabolic peaks with VIP values larger than 1 (labeled



Fig. 2. Discovery of discriminative metabolites using univariate and multivariate analyses. (a) A total of 197 metabolic peaks with VIP > 1 and P values < 0.05 were selected
for subsequent analysis. (b) PLS score plot of 197 metabolic peaks. (c) PCA score plot of 197 metabolic peaks. (d) Heat map of HCA of 197 metabolic peaks (Euclidian distance,
Ward aggregation).

Fig. 3. The validation using selected 57 metabolic peaks. (a) A total of 57 metabolic peaks were selected by fold-change >1.2 or <0.83. (b) PLS score plot of 57 metabolic peaks.
(c) The ROCs of predictive models with 57 metabolic peaks: red, PLS model; blue, random forest model; and purple, support vector machine (SVM) model.
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shapes were removed (Fig. S5). The remaining 38 metabolic peaks
were sorted according to their VIP values. First, we utilized all 38
metabolic peaks to build a PLS prediction model (see Materials
and Methods). In brief, 105 randomly sampled patients from the
dataset sample with replacement (about 63% of the patients in
average) were selected as discovery data to build the PLS predic-
tion model. The remaining about 37% of the patients in average
were used as validation data. Notably, there is no overlap between
discovery and validation data. This process was repeated 1000
times, and the AUCs with 38 metabolic peaks were recorded. Then,
a stepwise procedure was performed, where the metabolic peak
with the smallest VIP was removed in each step, and a PLS predic-
tion model was built (about 63% of the patients in average) and
validated with the remaining patients (remaining about 37% of
the patients in average, Fig. 4a) as above described. The detailed
code is provided in the Supplementary. As shown in Fig. 4a, the
top 15 metabolic peaks were appropriate and sufficient to build
the predictive model with a good AUC value. Thus, we identified
the metabolite structures of the 15 metabolic peaks (Fig. 4b and
Fig. S7–9). Detailed structural information of the 15 metabolic
peaks (metabolite biomarkers) is listed in Table 2. The AUC value
of the 15 metabolite markers was 0.80, and the 95% CI was 0.67–
0.91 in the NCRT response in the PLS prediction model (Fig. 4c).
Fig. 4. Building of prediction model. (a) Step-wise selection of potential metabolite b
metabolite biomarkers. (b) Structure identification of top 15 metabolic peaks according t
markers. (d) The ROCs of predictive models using logistic regression with risk factors, m
Development of logistic regression models with metabolite
biomarkers

We developed logistic regression models with the 15 metabo-
lite biomarkers and risk factors to determine whether the risk fac-
tors can improve prediction performance. The first prediction
model contained only risk factors (clinical T stage, clinical N stage,
tumor distance to anal verge and tumor length), and the AUC value
was 0.60 (95% CI 0.44–0.73). The second model contained only the
15 metabolite biomarkers, and the AUC value was 0.76 (95% CI
0.58–0.89). The third model integrated the risk factors and the
metabolite biomarkers, with an AUC value of 0.75 (95% CI 0.57–
0.88). These results demonstrated that the prediction model with
metabolite biomarkers was better than the prediction models with
risk factors (Fig. 4d). We also developed logistic regression models
with the 5 metabolite biomarkers (4-Imidazoleacetic acid, d-
Valerolactam, N-Methylethanolamine phosphate, PC (16:0/18:1),
PC (9:0)), and the AUC corresponding to this number of metabo-
lites is 0.74 (95% CI: 0.60–0.86, Fig. S10). We also calculated the
correlations of 15 metabolite biomarkers (Fig. S11), and there are
not clear and significant correlations between those 15 metabolite
biomarkers.
iomarkers. AUC distribution of PLS prediction models with different number of
o VIP values. (c) AUC distribution of PLS prediction model with the top 15 metabolic
etabolite biomarkers and both combined.



Table 2
List of identified 15 metabolic markers between NCRT-sensitive and NCRT-resistant patients.

Metabolic peak name m/z (Da) RT (second) Identification Identification level VIPa Fold changeb P valuec CV

M127T112 127.0515 112.34 4-Imidazoleacetic acid 1 2.7027 0.82 0.0009 0.048
M100T44 100.0760 43.75 d-Valerolactam 2 2.2707 0.60 0.0313 0.034
M156T112 156.0420 111.79 N-Methylethanolamine phosphate 2 2.2423 0.62 0.0233 0.119
M805T45 804.5522 45.25 PC(16:0/18:1) 2 2.223 1.32 0.0171 0.108
M412T212 412.2097 212.17 PC (9:0) 3 2.1755 0.82 0.0320 0.036
M833T255 833.0088 255.39 Unknown – 2.1463 1.31 0.0091 0.131
M229T311_1 229.1189 310.93 Dimethylglycine 3 2.1212 1.31 0.0290 0.047
M501T111 501.3929 110.77 Oleanolic Acid Acetate 4 2.079 0.79 0.0464 0.180
M696T156 695.5097 156.40 SM(d18:2/14:0) 3 1.9978 1.27 0.0336 0.080
M692T255 692.0215 255.27 Ganglioside GT1b (d18:0/14:0) 4 1.9664 1.22 0.0149 0.030
M170T372 170.0929 372.26 3-Methylhistidine 1 1.9299 0.69 0.0479 0.080
M817T255 817.0395 255.25 Unknown – 1.9148 1.27 0.0243 0.026
M678T134 678.4689 133.91 PC(27:1(OH)) 3 1.8994 0.75 0.0479 0.022
M278T269 278.1022 269.09 Dillapional 4 1.8917 0.82 0.0464 0.121
M650T136 650.4397 136.11 PC(25:1(OH)) 3 1.8809 0.79 0.0483 0.034

a VIP: variable importance in the projection of PLS model.
b Fold-change: NCRT-resistant patients divided by NCRT-sensitive patients.
c Wilcoxon rank-sum test.
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Metabolic dysregulation associated with the NCRT response

We mapped the top 15 metabolic biomarkers into the KEGG
database and found that 4-limdazoleacetic acid and 3-
methylhistidine were involved in the pathway of histidine metabo-
lism, dimethylglycine was involved in the pathways of glycine, ser-
ine and threonine metabolism, and N-methylethanolamine
phosphate was involved in the pathway of glycerophospholipid
metabolism. These results suggested that metabolic dysregulation
is closely associated with the response to NCRT.
Discussion

Currently, pathological TRG assessment is the most reliable
standard for the evaluation of response to NCRT. However, TRG
results are available only after the completion of both NCRT and
surgery; thus, these results cannot be used as a reference to adjust
the treatment strategy before or during therapy. In this cohort
study, we proposed metabolomics as an approach for evaluating
the sensitivity to NCRT using significantly changed metabolites
from fasting serum samples. According to the discriminative anal-
ysis, the PLS model was constructed with 57 significant metabolic
peaks that performed well with an AUC value of 0.88. Although
there was no significant difference regarding the clinic pathological
features between NCRT-sensitive and -resistant patients, the meta-
bolomic profiles effectively categorized those patients into two dis-
tinct groups. Furthermore, four amino acids and eleven lipids were
identified, and the PLS model constructed with these fifteen
metabolites showed an ideal discriminant performance with an
AUC value of 0.80. The results indicated that differentially
expressed metabolite biomarkers facilitated the discrimination of
the patients who are likely or unlikely to benefit from NCRT. The
satisfactory prediction performance through the serum metabo-
lites suggested that metabolomics might be a new approach in
terms of selecting LARC patients for personalized treatment strat-
egy most suitable in clinical practice. In addition, the metabolites
detected by LC–MS provide better insights into the metabolism
mechanism from molecular level.

The alternation of the amino acid metabolism is a consequence
of the metabolic dysfunction in cancer. In the present study, 4
amino acids out of 15 identified metabolites showed significantly
differential expression in the serum samples from the resistant
group compared with the sensitive group. Previous studies also
demonstrated higher concentrations of various amino acids in col-
orectal cancer [40,41], but they have not to be explored as
biomarkers for predicting tumor response to NCRT in LARC. The
metabolites 4-imidazoleacetic acid and 3-methylhistidine were
involved in the histidine metabolism pathway. Histidine is a half-
essential amino acid, and histidine deficiency has been implicated
in tumor growth and the promotion of inflammation-associated
carcinogenesis [42]. We searched the Human Metabolome Data-
base (HMDB), and histidine was found to be correlated with cancer
[43–47], obesity [48] Alzheimer’s disease [49], etc. Our study
demonstrated that 4-imidazoleacetic acid and 3-methylhistidine
were both down-regulated in the serum of NCRT-resistant
patients. Thus, depleted 4-imidazoleacetic acid and 3-
methylhistidine in the serum of resistant patients may indicate
the higher absorption of 4-imidazoleacetic acid and 3-
methylhistidine in tumor cells to sustain rapid cell proliferation.

We also found that dimethylglycine was involved in the glycine
metabolism pathway. Sreekumar et al. confirmed that glycine was
closely associated with tumor cell growth [50]. Lin et al. also
reported the decreased expression of dimethylglycine in colorectal
cancer patients compared with healthy controls [51]. Benito et al.
suggested dimethylglycine as a potential biomarker for renal
impairment [52]. Liu et al. also reported that the expression of
dimethylglycine dehydrogenase is decreased in hepatocellular car-
cinoma [53]. In addition, according to the HMDB database,
dimethylglycine was detected in Leukemia [54] and some solid
cancers [53], especially in colorectal cancer [55,56]. The change
and variation in the amino acid profiles might be attributable to
the gluconeogenesis and protein synthesis [57]. Consequently,
the fact that amino acids differed between sensitive and resistant
patients might be a consequence of the destruction of the cellular
proteins of the tumor.

Furthermore, the sample size in the present study was larger
than those in other similar studies, which were usually between
40 and 80 patients [58–60]. However, compared with the high
dimensional metabolomics data, the present sample size is still
limited. Therefore, three statistical models were used to build pre-
diction models and allow for the inclusion of a large number of
variables. Since the training and testing were performed on the
same set, a bootstrap method was used to minimize bias and
improve prediction precision.

Ideally, response prediction should be performed prior to NCRT
to offer the patient personalized treatment with a higher chance of
success and better benefits. Although the present results showed
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that metabolite biomarkers have the potential predictive capability
for the response of NCRT, external validation of this prediction
model is necessary for a systematic evaluation of this method.
Another interesting issue is whether the changes of metabolite
levels during NCRT can further enhance the performance of this
model, which should be studied in the future.

In conclusion, we demonstrated that metabolomics studies on
patient serum samples were able to discriminate NCRT-sensitive
from NCRT-resistant patients, facilitating the development of a
new predictive tool for LARC with a serum metabolite test. The
results of the present prospective study showed promising results
that a total of 15 differently expressed metabolites could be used to
identify the potential NCRT-sensitive LARC patients; thus, benefi-
cial functional and clinical outcomes can be achieved without com-
plete resection. In contrast, the successful identification of NCRT-
resistant patients would reduce their likelihood to receive ineffec-
tive NCRT treatment, and directing these patients to surgery would
be a better course of action. As oncology research evolves toward
personalized medicine, the method proposed in the present study
has important implications in clinical practice. However, these
findings require further large-scale and multi-institutional valida-
tion for confirmation of the applicability of metabolomics for pre-
dicting the response to NCRT.
Translational relevance

Reliable predictive markers of NCRT are needed to maximize
patient benefits. Dynamic changes of metabolites in LARC patients
make these molecules potential candidate biomarkers. In the pre-
sent study, we identified a panel of metabolite markers with great
potential for an early assessment of NCRT response and described
the underlying pathways to support potential metabolic mecha-
nisms. The results revealed the great value of metabolomics in tai-
loring treatment strategies.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.radonc.2018.06.
022.
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