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Abstract: Liquid Chromatography-Mass Spectrometry (LC-MS) untargeted metabolomics has become a 
cornerstone of modern biomedical research, enabling the analysis of complex metabolite profiles in biological 
systems. However, metabolite annotation, a key step in LC-MS untargeted metabolomics, remains a major 
challenge due to the limited coverage of existing reference libraries and the vast diversity of natural metabolites. 
Recent advancements in large language models (LLMs) powered by Transformer architecture have shown 
significant promise in addressing challenges in data-intensive fields, including metabolomics. LLMs, which when 
fine-tuned with domain-specific datasets such as mass spectrometry (MS) spectra and chemical property databases, 
together with other Transformer-based models, excel at capturing complex relationships and processing large-
scale data and significantly enhance metabolite annotation. Various metabolomics tasks include retention time 
prediction, chemical property prediction, and theoretical MS2 spectra generation. For example, methods such as 
LipiDetective and MS2Mol have shown the potential of machine learning in lipid species prediction and de novo 
molecular structure annotation directly from MS2 spectra. These tools leverage transformer principles and their 
integration with LLM frameworks could further expand their utility in metabolomics. Moreover, the ability of 
LLMs to integrate multi-modal datasets—spanning genomics, transcriptomics, and metabolomics—positions them 
as powerful tools for systems-level biological analysis. This review highlights the application and future 
perspectives of Transformer-based LLMs for metabolite annotation of LC-MS metabolomics incorporating with 
multiomics. Such transformative potential paves the way for enhanced annotation accuracy, expanded metabolite 
coverage, and deeper insights into metabolic processes, ultimately driving advancements in precision medicine 
and systems biology. 
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1. Introduction 

Metabolomics is the comprehensive analysis of metabolites within cells, biological fluids, tissues, and 
organisms, emphasizing their composition, dynamic variations, and interactions [1]. Key analytical techniques in 
metabolomics include Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) spectroscopy [2,3]. 
Among these, Liquid Chromatography-Mass Spectrometry (LC-MS) has emerged as a cornerstone technology in 
metabolomics research [4], which is widely applied in diverse areas, including disease biomarker discovery, drug 
development, toxicity evaluation, and integrative multi-omics analyses [5,6]. 

The standard workflow of LC-MS metabolomics typically comprises sample collection and preparation, data 
acquisition and processing, data cleaning, metabolite annotation, and biological interpretation [7]. Recent 
technological advancements have made these workflows increasingly sophisticated and efficient. However, 
metabolite annotation remains a significant challenge in LC-MS untargeted metabolomics [8]. Despite the 
development of various tools and methods like GNPS [9], SIRIUS [10], MetFrag [11], MetDNA [12], metID [13], 
and massdatabase [14], metabolite annotation predominantly relies on comparison with reference databases. This 
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reliance on publicly available databases is a major limitation, as these databases cover only a fraction of the vast 
diversity of natural metabolites [15]. At the same time, improvements in MS have enhanced sensitivity and 
increased the detection of metabolic features. However, only a small proportion of these features can be reliably 
annotated [16]. Given that metabolite annotation is a critical step for translating chemical data into meaningful 
biological insights, the development of innovative methods to expand the scope of metabolite annotation continues 
to be a focal area of research. 

The recent success of large language models (LLMs) has garnered significant public attention [17,18]. These 
models, primarily built on Transformer architecture, leverage the self-attention mechanism to capture relationships 
across different positions in a sequence [19]. Compared to traditional machine learning models, LLMs exhibit 
superior generalization capabilities and have demonstrated exceptional performance across various tasks, 
including natural language processing and representation learning [20]. Additionally, the Transformer architecture 
enables these models to model complex relationships and process datasets with high-dimensional and non-linear 
features, such as chemical structures and spectral data, making them particularly suitable for applications in 
biomedical research [21]. When fine-tuned with domain-specific representations like SMILES strings, molecular 
graphs, or curated MS spectra, LLMs hold promise for addressing key challenges in analyzing LC-MS 
metabolomics [22], including retention time prediction, molecular property inference, theoretical MS2 spectra 
generation, and metabolite annotation workflows. This review provides an overview of LLMs, explores their 
current applications in LC-MS untargeted metabolomics, and discusses future perspectives. 

2. Overview of Large Language Models 

Large language models (LLMs) represent a significant breakthrough in artificial intelligence (AI), transforming 
how complex data is processed and interpreted. The Transformer architecture, an effective deep learning model 
widely adopted across various research areas, serves as the fundamental backbone of LLMs [19,23,24]. At its core, 
the Transformer’s self-attention mechanism functions like a dynamic information filtering system, enabling the 
model to identify and weigh relationships between different elements across vast amounts of sequential data. 
Through this architectural innovation, LLMs can understand and generate human-like language with remarkable 
precision [25]. These models are pre-trained on massive datasets, often spanning from gigabytes to terabytes in 
size, consisting of billions to hundreds of billions in parameters, to learn statistical relationships within text. This 
pretraining allows LLMs to perform a wide variety of tasks, including text summarization, code generation, and 
knowledge retrieval [26,27]. 

Traditional deep learning models, including recurrent neural networks (RNNs) [28], long short-term memory 
networks (LSTMs) [29], gated recurrent units (GRUs) [30], convolutional neural networks (CNNs) [31], and sequence-
to-sequence (Seq2Seq) [32] models, have been widely used in metabolomic studies [33–36]. However, these models 
primarily rely on supervised learning tailored to specific tasks [37,38]. Although they are effective for well-defined 
applications, they often struggle to generalize and perform poorly when applied to different tasks [26,27]. In contrast, 
LLMs leverage a massive number of parameters and extensive pretraining on vast datasets, providing significant 
advantages over traditional deep learning models. Furthermore, self-supervised pre-training, which automatically 
derives supervision signals from unlabeled data (e.g., by predicting masked tokens in a sentence), enables these 
models to learn from large-scale unlabeled text corpora, thereby reducing the need for manual data labeling 
compared to conventional methods. 

One of the most transformative features of LLMs is their ability to solve a wide variety of tasks through 
prompting alone, often without requiring parameter fine-tuning. However, fine-tuning or instruction tuning 
remains beneficial for specialized applications. 

LLMs can generally be classified into two categories: open-source and closed-source models (Figure 1a). 
Examples of open-source models include Grok-1 (https://github.com/xai-org/grok-1, accessed on 30 November 2024), 
Mistral (https://mistral.ai/news/announcing-mistral-7b/, accessed on 30 November 2024), LLaMA 3 
(https://github.com/meta-llama/llama3, accessed on 30 November 2024), and Qwen 2.5 
(https://github.com/QwenLM/Qwen2.5, accessed on 30 November 2024), while closed-source models include 
Gemini 1.5 (https://deepmind.google/technologies/gemini/, accessed on 30 November 2024), Grok-2 
(https://x.ai/blog/grok-2, accessed on 30 November 2024), OpenAI o1 (https://openai.com/o1/, accessed on 30 
November 2024), and Claude 3.5 (https://www.anthropic.com/news/claude-3-5-sonnet, accessed on 30 November 
2024). Open-source models typically share their weights and often portions of their training code, allowing 
researchers and developers to freely download, fine-tune, and deploy them locally. This makes them particularly 
suitable for applications with strict data security requirements or specialized domain needs. In contrast, closed-
source models maintain proprietary control over their core technologies, generally command higher commercial 
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value, and often benefit from more substantial training investments. Consequently, they tend to demonstrate 
superior performance compared to open-source models. 

 

Figure 1. Overview of Large Language Models (LLMs) and their core principles. (a) Commonly used LLMs 
are categorized as open-source (e.g., Grok-1, Mistral, LLaMA3, Qwen 2.5) and closed-source (e.g., Gemini 1.5, 
OpenAI GPT models, Claude 3.5). (b) Input representation for LLMs: Text is tokenized into individual tokens 
(“My,” “dogs,” “likes,” “play,” “ing”), which are then transformed into token embeddings and combined with 
position embeddings to represent input sequences. (c) The model architecture of LLMs: The architecture includes 
multiple layers (N layers) consisting of Masked Multi-Head Self-Attention, Feed Forward networks (simple fully 
connected layers), and Layer Normalization (which normalizes the outputs within each layer), with text and 
positional embeddings as input. (d) Pre-training strategies for LLMs. (e) Fine-tuning of LLMs: Techniques include 
Transfer Learning, Instruction-tuning, and Alignment-tuning. 

3. Main Principles of LLMs 

This section introduces the fundamental principles underlying LLMs. 

3.1. Input Representation 

Input representation involves transforming natural language inputs into numerical formats that deep learning 
models can process, commonly referred to as encoding (Figure 1b). Tokenization is the first step, breaking input 
text into units like characters, subwords, symbols, or words. Each token is then mapped into a fixed-dimensional 
vector through an embedding layer, optimized during training to capture linguistic and contextual information. 
Positional embeddings are added to these vectors to encode token order, addressing the position-agnostic nature 
of the Transformer’s attention mechanism [19]. 

3.2. Model Architecture 

The Transformer [19] is the foundational architecture for most modern LLMs [23,39,40]. Introduced in 2017 
for machine translation, the Transformer architecture has since become widely adpoted in fields such as computer 
vision, audio processing, and robotics due to its outstanding performance [41–43], which played a pivotal role in 
the development of LLMs [26,27]. 

The success of Transformer is largely attributed to its attention mechanism, which processes sequences in 
parallel and captures long-range contextual relationships [19]. In this mechanism, the model maps inputs into 
query, key, and value representations. The attention score is calculated as the scaled dot product of the query and 
key, normalized through a softmax function, and then used to weigh the value representations. This approach 
allows the model to focus on the most relevant parts of the input sequence. Typically, Transformers employ a 
multi-head attention mechanism, where multiple attention heads operate in parallel. This design enables the model 
to attend to information from different representation subspaces simultaneously (Figure 1c). Unlike traditional 
language models such as RNNs, which process inputs sequentially, the Transformer processes entire sequences in 
parallel, making it highly efficient for large-scale data. This parallel processing capability enables LLMs to handle 
long sequences and large datasets, fostering their emergence.  
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3.3. Pre-Training 

During pre-training, LLMs utilize self-supervised learning to analyze massive unlabeled text corpora, 
eliminating the need for manually annotated data [44]. Pre-training objectives vary depending on the LLM 
architecture (Figure 1d): 
(1) Full language modeling: The model predicts future tokens based on preceding tokens, as seen in 

autoregressive models like GPT [45]. 
(2) Prefix language modeling: A random prefix is chosen, and the subsequent tokens are used to calculate the loss. 
(3) Masked language modeling: Tokens are randomly masked in the input, and the model predicts these masked 

tokens using context from both preceding and following tokens, as in bidirectional models like BERT [23]. 
These diverse training objectives enable LLMs to learn general language patterns and relationships, forming 

the foundation for downstream applications. 

3.4. Fine-Tuning 

Although pre-trained LLMs demonstrate strong generalization capabilities across various tasks, fine-tuning can 
further optimize them for specific downstream applications [45] (Figure 1e). Key fine-tuning approaches include: 
(1) Transfer learning: Fine-tuning the pre-trained model on datasets specific to a target task [40,46], enhancing 

performance for domain-specific applications. 
(2) Instruction-tuning: The model is fine-tuned on datasets formatted as natural language instructions to 

enhance the model’s ability to generate accurate and context-appropriate responses. These datasets typically 
span multiple tasks to improve generalization [47]. 

(3) Alignment-tuning: To mitigate issues such as the generation of biased, false, or harmful content, LLMs 
undergo alignment-tuning, where feedback is used to adjust the models in accordance with human preferences. 
This ensures models are better calibrated to avoid producing inappropriate or unexpected outputs [48]. 
These fine-tuning strategies have significantly enhanced the utility of LLMs across diverse applications, 

improving their adaptability and robustness in various fields [45]. 

4. The Applications of LLMs in Biomedical Research 

The applications of LLMs in biomedical research have grown rapidly, currently primarily across five 
domains: bioinformatics analysis, AI-powered intelligent agents, text mining and knowledge extraction, molecular 
design and property prediction, and multi-omics data integration. These advancements transform how complex 
biomedical challenges are addressed, offering enhanced precision, scalability, and interactivity. 

4.1. Bioinformatics Analysis Assistants 

LLMs have demonstrated immense potential in supporting a variety of bioinformatics tasks. By leveraging 
their ability to process and analyze high-dimensional data, LLMs contribute to several key areas: 
(1) Protein structure analysis: LLMs have been employed to predict and understand protein structures and 

interactions, significantly advancing efforts to understand molecular biology and disease mechanisms. Tools 
like ProteinGPT have set new benchmarks for accuracy in this field [49,50]. 

(2) Sequence analysis: LLMs facilitate the analysis of nucleotide and amino acid sequences, enabling efficient 
pattern recognition, motif detection, and annotation of genomic data [51,52]. 

(3) Gene expression and regulation analysis: By interpreting complex functional genomic and epigenomic 
datasets, LLMs assist in uncovering gene regulation patterns, identifying biomarkers, and elucidating the 
molecular basis of diseases [53–55]. 

(4) Drug discovery: The integration of LLMs into drug discovery pipelines accelerates processes such as virtual 
screening, compound optimization, and predicting drug-target interactions. These models also support the 
generation of novel molecular structures with desired pharmacological properties [56–58]. 
In these applications, LLMs excel due to their ability to analyze large datasets, extract meaningful patterns, 

and provide interpretable outputs that aid decision-making. 
  



Health Metab. 2025, 2(2), 7 https://doi.org/10.53941/hm.2025.100014  

5 of 15 

4.2. AI Agents in Biomedical Research 

LLM-powered AI agents represent a more advanced application of these models, enabling dynamic problem-
solving and operational assistance in biomedical research. These agents address complex challenges by leveraging 
advanced capabilities, including: 
(1) Database retrieval and integration: AI agents can retrieve, integrate, and analyze information from diverse 

biomedical databases, such as PubMed (https://pubmed.ncbi.nlm.nih.gov/, accessed on 30 November 2024), 
UniProt (https://www.uniprot.org/, accessed on 30 November 2024), and KEGG (https://www.genome.jp/kegg/, 
accessed on 30 November 2024). They streamline data queries, generate comprehensive summaries, and 
facilitate cross-database analyses [59–61]. 

(2) Experimental platform management: These agents manage experimental workflows by coordinating 
software tools and laboratory equipment through APIs, and automating processes such as data acquisition, 
analysis, and reporting [62,63]. 

(3) Conversational systems with reflective learning: Equipped with natural language interfaces, AI agents 
interact seamlessly with researchers, providing explanations, answering questions, and adapting their 
knowledge base through reflective learning [64]. 

(4) Reasoning and decision-making: LLMs enable these agents to perform reasoning tasks, such as forming 
hypotheses, prioritizing experiments, or evaluating alternative strategies [65,66]. 
By combining these capabilities, LLM-based AI agents act as versatile collaborators, empowering 

researchers to focus on higher-level problem-solving while automating routine or complex tasks. 

4.3. Text Mining and Knowledge Extraction 

LLMs are widely used in biomedical text mining to extract meaningful insights from large corpora of 
scientific literature: 
(1) Named entity recognition: These models help identify and categorize biomedical entities such as genes, 

proteins, diseases, and drugs within text, facilitating downstream analysis [67,68]. 
(2) Drug repurposing insights: By analyzing relationships and co-occurrence patterns in the literature, LLMs 

contribute to drug repurposing efforts by identifying potential therapeutic uses for existing compounds [69]. 

4.4. Molecular Design and Property Prediction 

LLMs are widely used in advancing computational chemistry and molecular design: 
(1) SMILES generation: LLMs generate novel SMILES strings for molecules, supporting the discovery of 

compounds with desired properties [70]. 
(2) Property prediction: These models predict molecular properties such as solubility, toxicity, and binding 

affinity, enabling efficient prioritization of candidate compounds [71]. 
(3) Reaction prediction: LLMs assist in predicting the outcomes of chemical reactions, reducing experimental 

trial-and-error efforts [72]. 

4.5. Multi-Omics Data Integration 

LLMs enhance the integration of diverse omics datasets, enabling systems-level insights: 
(1) Cross-Modal analysis: These models facilitate the integration of genomics, transcriptomics, proteomics, and 

metabolomics data, identifying correlations and causative relationships across modalities [73]. 
(2) Biomarker discovery: Through multi-omics integration, LLMs contribute to identifying biomarkers for 

disease diagnosis, prognosis, and therapeutic response [74]. 

5. Applications of LLMs for Metabolite Annotation in LC-MS Metabolomics Data 

Compared to other omics fields such as genomics, epigenomics, transcriptomics, and proteomics, the 
application of LLMs in metabolomics remains relatively limited and less explored. However, an increasing number 
of studies are now leveraging LLMs and other Transformer-based models for LC-MS data processing and analysis, 
with a particular focus on metabolite annotation [75–77]. Different from traditional machine learning models and 
other machine learning methods, LLMs and other Transformer-based models have illustrated numerous advances 
in the field of metabolite annotaion. For example, LLMs and other Transformer-based models have better 
generalizability than traditional machine learning models and have a good performance for untargeted 
metabolomics [20,77]. Also, for LLMs that are fine-tuned with domain-specific datasets and Transformer-based 
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models that are specially designed for certain tasks, they have been found to have better prediction performances 
than other methods on multiple applications such as retention time prediction [78], MS2 spectra prediction [79] 
and lipid species annotation [76]. These emerging approaches can be broadly categorized into three distinct 
methods (Figure 2a), as outlined below. 

 

Figure 2. Applications of LLMs for metabolite annotation in LC-MS metabolomics data. (a) Overview of 
three major classes of LLM-based methods for metabolite annotation. (b) Retention Time and chemical property 
prediction: The RT-Transformer predicts retention time (left panel) and chemical properties (right panel) using 
MS2 spectra. (c) MS2 spectral prediction: MassFormer employs a graph Transformer architecture to predict MS2 
spectra by learning relationships between molecular fragments and experimental parameters. (d) Molecular 
structure prediction: MS2Mol performs de novo molecular structure prediction directly from MS2 spectra, 
integrating spectral features and fragmentation trees to infer potential molecular structures. 

5.1. Retention Time Prediction 

Retention time (RT) is a crucial parameter in LC-MS metabolomics, representing the time each compound 
spends within the chromatographic column during analysis [80]. RT is influenced by various molecular 
characteristics, including size, polarity, and functional groups, providing an essential basis for the separation and 
identification of metabolites [81]. However, experimental determination of RT is often costly and time-consuming, 
highlighting the need for innovative computational methods to improve prediction efficiency and accuracy [78]. 

Significant progress has been made in RT prediction with the development of computational models. Among 
these, graph-based neural networks such as GNN-RT [82] and MPNN [83], deep neural networks like DNNpwa [84], 
and convolutional neural networks such as 1D-CNN [85] have shown promising results. Despite these 
advancements, the potential of Transformer architectures in RT prediction remains underexplored. 

Recently, Xue et al. introduced a novel model, RT-Transformer, which integrates 1D-Transformer and graph 
attention networks (GAT) to improve RT prediction [78] (Figure 2b). Unlike traditional methods that primarily 
rely on molecular fingerprints or descriptors, RT-Transformer incorporates detailed molecular structure 
information, including node and edge attributes from molecular graphs [78,80]. This model uses molecular graphs 
alongside molecular fingerprints as inputs. The 1D-Transformer generates high-dimensional feature vectors from 
the fingerprints, which are then combined with feature vectors derived from molecular graphs to predict RT [78]. 
To evaluate its performance and transfer learning capabilities, RT-Transformer was tested on the SMRT dataset and 
41 independent datasets. Results demonstrated superior performance compared to other models like GNN-RT [82] 
and MPNN [83] across several key metrics, including mean absolute error (MAE), mean relative error (MRE) and 
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coefficient of determination (R2) [78]. These findings highlight the potential of Transformer-based architectures 
for advancing RT prediction in LC-MS metabolomics. 

5.2. Chemical Properties Prediction 

Chemical properties represent the intrinsic characteristics of a metabolite that dictate its behavior in chemical 
reactions and interactions, such as chemical stability, solubility, and reactivity [86]. In the context of metabolite 
annotation, these properties hold significant potential for a variety of applications [87]. For instance, after 
predicting the chemical properties of metabolic features, these predictions can be matched against the chemical 
properties of standard metabolites in a reference library, effectively narrowing down the pool of candidate 
metabolites. Additionally, predicted properties can be integrated with other annotation methods to enable multi-
dimensional validation, thereby reducing false positives and improving annotation accuracy [88]. 

MS2Prop is based on Transformer architecture, which can predict chemical properties of metabolic features 
directly from their tandem mass spectra (MS2) spectra [89] (Figure 2b). Thanks to the capabilities of the 
Transformer architecture, MS2Prop is well-suited for processing disordered MS2 spectra. Briefly, the MS2 spectra 
are first embedded into high-dimensional feature vectors using the Transformer module and then passed through 
a feedforward neural network to predict chemical properties [89]. A notable advantage of MS2Prop is its 
exceptional efficiency, generating predictions for an MS2 spectrum in under 2 milliseconds. This rapid processing 
capability enables the analysis of large-scale metabolomics datasets in a fraction of the time typically required. 
Moreover, MS2Prop exhibits robust performance and generalization ability. When applied to novel compounds, 
the model achieved an average R2 of 70% across 10 chemical properties, including logP, synthetic accessibility, 
and polar surface area. These results highlight MS2Prop’s potential as a powerful and reliable tool for chemical 
property prediction and metabolite annotation. 

5.3. MS2 Spectra Prediction 

Tandem mass spectra (MS2 or MS/MS spectra) provide crucial structural information about metabolites and 
play a pivotal role in metabolite annotation [90]. However, acquiring MS2 spectra for all standard metabolites is 
highly challenging due to the time, cost, and practical difficulties in obtaining pure standards for every possible 
metabolite [14]. This limitation leads to gaps in reference libraries, making theoretical MS2 spectra prediction an 
essential solution to address the scarcity of MS2 spectra for metabolite annotation [91]. 

Recently, several methods leveraging advanced machine learning models, particularly those based on LLMs 
and transformer architectures, have been developed for MS2 spectra prediction [92,93]. These methods aim to 
efficiently generate accurate theoretical MS2 spectra for a wide range of metabolites, significantly expanding the 
coverage of reference libraries. 

MassFormer is one such method that utilizes a graph Transformer to predict the MS2 spectra of metabolites [93] 
(Figure 2c). This model employs the Transformer attention mechanism to capture global relationships between 
nodes (atoms) and edges (chemical bonds) in the molecular graph, which serves as the input representation of the 
metabolite. In addition to structural features, the input includes experimental parameters such as collision energy 
and precursor adducts, which are critical for accurately modeling MS2 spectra prediction. The graph Transformer 
extracts global molecular features, combines them with experimental metadata, and uses multi-layer perceptrons 
(MLPs) to predict the MS2 spectra. Comparisons with traditional methods on datasets such as the MassBank of 
North America (MoNA) and the National Institute of Standards and Technology Database (NIST) showed that 
MassFormer outperformed traditional approaches like competitive fragmentation modelling (CFM) [94,95], 
fingerprint neural network model (FP) [96] and Weisfeiler–Lehman Network (WLN) [97], achieving significantly 
higher scores in cosine similarity and top-5 accuracy metrics [93]. 

These LLM-based models represent a significant step forward in MS2 spectra prediction, enabling researchers 
to expand reference libraries with high-quality theoretical MS2 spectra [92,93]. By leveraging these advanced 
computational approaches, the metabolomics community can overcome the limitations of incomplete MS2 spectral 
libraries and achieve more comprehensive and accurate metabolite annotation. 

5.4. Lipid Species Annotation 

Lipids are a diverse group of organic compounds that are widely distributed across animals, plants, and 
microorganisms [98]. They play essential roles in biological processes, including energy storage, cell membrane 
structure, and signaling pathways [99]. Unlike other small metabolites, lipids have relatively standardized 
structures, allowing them to be classified into various categories, such as fatty acids, glycerides, and 
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glycerophospholipids [100]. Lipids within the same category often share similar structures and functions, making 
their accurate annotation crucial for addressing biological research questions [101]. 

To address the challenges in lipid species annotation, LipiDetective was developed as a Transformer-based 
model designed for lipid species prediction [76]. The model was trained on a dataset comprising MS2 spectra from 
eight lipid classes, allowing it to learn the characteristic fragmentation patterns of lipids [76]. Using this knowledge, 
LipiDetective can predict the identities of novel lipid species based on their MS2 spectra [76]. A major advantage of 
LipiDetective over traditional methods lies in its ability to generalize, making it capable of identifying unknown lipid 
species with higher accuracy. This generalization is particularly important given the structural diversity of lipids and 
the limitations of existing reference libraries. As the first model to directly utilize deep learning technology for lipid 
species prediction from MS2 spectra, LipiDetective represents a significant milestone in lipidomics. 

Despite its groundbreaking potential, LipiDetective’s performance still has room for improvement, 
particularly in fine-tuning its prediction accuracy across diverse lipid classes. Nonetheless, its introduction 
highlights the transformative power of Transformer models in lipidomics, paving the way for future innovations 
in this field. As researchers continue to optimize these models and expand their training datasets, the potential for 
highly accurate, high-throughput lipid annotation will be further realized, enhancing our understanding of lipid 
biology and its implications for human health. 

5.5. Fingerprints Prediction 

A molecular fingerprint is an abstract representation of a metabolite that encodes its chemical structure into 
a fixed-length, sparse binary vector [102]. Each bit in the vector typically represents the presence or absence of 
specific chemical substructures, such as hydroxyl groups or aromatic rings [103]. Molecular fingerprints capture 
the existence characteristics of a molecule’s chemical structure, enabling efficient screening of potential compound 
candidates by comparing them to the molecular fingerprints of metabolites in a reference library [104]. 

Some studies have attempted to predict the metabolites’ molecular fingerprints directly from MS2 spectra 
based on the Transformer model [75,105]. Baygi et al. introduced IDSL_MINT, a model that utilizes Transformer 
architecture to convert MS2 spectra into molecular fingerprints [75]. By employing position encoding and attention 
mechanisms, IDSL_MINT effectively captures the characteristics of spectral segments and achieves high accuracy 
in both positive and negative ionization modes. 

Similarly, Goldman et al. developed MIST (Mass Spectrum to Fingerprint Transformer) to predict molecular 
fingerprints from MS2 spectra and then annotate metabolites [105]. The key innovation in MIST is the 
representation of fragments as chemical formula vectors, which are then processed using a set of transformers to 
learn the relationships between peaks. This allows MIST to generate high-resolution molecular fingerprints as its 
output. The model demonstrated superior performance in fingerprint prediction tasks, outperforming existing 
methods on over 70% of test datasets, according to the authors’ evaluation [105]. 

These advancements highlight the potential of Transformer-based models in molecular fingerprint 
prediction, paving the way for more accurate and high-throughput metabolite annotation workflows in LC-MS 
untargeted metabolomics. 

5.6. Molecular Structure Prediction for Direct Metabolite Annotation 

Unlike the above prediction methods that estimate one or more properties of metabolites and annotate them 
by matching experimental features to a reference library, some approaches aim to predict the molecular structure 
directly from MS2 spectra [106,107]. These end-to-end methods bypass the need for intermediate metrics or 
database matching, offering a direct route to metabolite annotation. 

Shrivastava et al. introduced MassGenie, a model combining a Transformer network with a variational 
autoencoder (VAE) to generate potential molecular structures from MS2 spectra [108]. MassGenie features a 
Transformer architecture comprising a 12-layer encoder and a 12-layer decoder with approximately 400 million 
parameters. This design enables the model to learn molecular fragments and structural characteristics from MS2 
spectra effectively. While its application is limited to small metabolites with molecular weights below 500 Da and 
depends heavily on high-quality MS data, MassGenie demonstrates the potential of Transformer-based 
architectures for annotating unknown metabolites [108]. 

Similarly, Mass2SMILES leverages a hybrid Transformer and time-convolutional network (TCN) 
architecture to annotate metabolites directly from high-resolution MS2 spectra [109]. This model successfully 
predicted seven completely correct structures out of 744 validation spectra, showcasing its utility in molecular 
structure prediction. 
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Another noteworthy method is MS2Mol, which represents a de novo approach to structure prediction [77] 
(Figure 2d). MS2Mol directly predicts molecular structures from MS2 spectra without relying on reference 
compound databases. 

A complementary approach incorporates fragmentation trees, a graph-based representation of molecular 
fragmentation [110]. In a fragmentation tree, nodes represent fragmentations in the MS2 spectra, and edges 
represent fragmentation reaction relationships between these fragmentations. This structure provides insight into 
both global and local dependencies, aiding in the inference of functional groups and molecular substructures. 
Building on this concept, Zhang et al. developed MS2-Transformer, a Transformer-based model that integrates 
fragmentation trees derived from spectral data as part of its input [111]. By incorporating information about 
chemical bonds, this approach significantly improved model performance. Meanwhile, Yang et al. introduced TeFT, 
a lightweight Transformer model designed to generate SMILES representations of molecular structures [112]. TeFT 
integrates fragmentation tree information into its predictions, comparing the generated SMILES with the 
fragmentation tree to refine the inferred molecular structure and generate candidate metabolites. 

In summary, these Transformer-based approaches highlight the growing capability of modern LLMs to 
directly predict molecular structures from MS2 spectra, reducing reliance on reference libraries and traditional 
tools [77,108]. As these models continue to evolve, they promise to improve the efficiency, accuracy, and coverage 
of metabolite annotation in untargeted metabolomics. 

6. Future Perspectives 

The annotation of single metabolites provides essential insights into their specific structures and properties [15]. 
However, the vast number of metabolites and the intricate interactions within biological metabolic processes 
necessitate a broader approach that explores the relationships and correlations between metabolites [113]. One 
promising strategy is the construction of metabolite networks, which use graph theory to represent metabolites as 
nodes and define edges based on biochemical reactions, structural similarities, co-occurrence relationships, or 
functional connections [114]. LLMs can capture complex dependencies and relationships in the networks by 
integrating with knowledge graphs and using algorithms to generate subgraphs from them, making them very 
suitable for analyzing these networks [115,116]. These models hold the potential to uncover novel metabolic 
reactions, metabolites, and pathways/modules, providing a more holistic understanding of metabolic processes 
(Figure 3a). 

A significant bottleneck in metabolomics research is the limited availability of MS2 spectra for metabolites in 
reference libraries [117]. While LLMs have shown great success in predicting accurate MS2 spectra or directly 
inferring molecular structures from MS2 spectra, many metabolic features lack corresponding MS2 spectra [109,118]. 
This limitation prevents these models from annotating such metabolic features using current approaches [22]. To 
overcome this challenge, innovative computational methods are needed. By integrating metabolic features 
(including m/z, RT, adducts, and isotope patterns) with MS2 spectral data and embedding using GPT, we can 
annotate metabolic features using multi-modal and multi-dimensional information rather than relying solely on 
MS2 spectra. Their strengths in text learning, logical reasoning, and content generation make them ideal for this 
task, offering a pathway to extend annotation coverage significantly (Figure 3b). 

Simultaneously, multi-omics data integration is becoming a cornerstone of biomedical research [119]. 
Combining metabolomics with transcriptomics, proteomics, and microbiomes enables a more comprehensive 
understanding of biological systems [120,121]. Transformer-based models, with their ability to process 
heterogeneous data types and extract interrelated information, are particularly well-suited for integrating multi-
omics datasets. By formatting multi-omics data into structured sentences, LLMs can comprehend complex 
biological mechanisms and provide deeper insights into system-wide biological processes through training or fine-
tuning on domain-specific datasets [73]. This integration could reveal complex interactions among microbiotas, 
proteins, and metabolites, paving the way for breakthroughs in disease prediction, biomarker discovery, and 
therapeutic target identification (Figure 3c). 

In summary, the incorporation of advanced Transformer-based models into metabolomics research holds 
immense potential. These models are poised to revolutionize the field by unlocking deeper insights into metabolic 
networks, improving annotation accuracy, and facilitating systems-level understanding in both basic and applied 
scientific research. 



Health Metab. 2025, 2(2), 7 https://doi.org/10.53941/hm.2025.100014  

10 of 15 

 

Figure 3. Future perspectives. (a) LLMs can utilize known reaction networks between metabolites to predict 
novel biochemical reactions, previously unidentified metabolites formed through these reactions, and potential 
novel metabolic pathways or functional modules. (b) LLMs can integrate multiple types of input information, such 
as MS2 spectra, RT, m/z, and other metadata, to predict metabolites in an end-to-end manner. These predictions can 
be stratified into different levels of detail, including superclass, class, subclass, and molecular structures (e.g., 
SMILES or fingerprints), with varying levels of confidence. (c) LLMs can incorporate multi-omics information, 
such as proteomics, metabolomics, and microbiomics, to uncover new interactions between different omics layers. 
This includes identifying novel microbiota-derived metabolites and discovering new regulatory networks that 
connect genes, proteins, and metabolites. 
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