




























































































































Figure 6
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Supplementary Notes for “Common and rare variant

analyses combined with single-cell multiomics reveal

cell-type-specific molecular mechanisms of COVID-19

severity”

1 Update rules of variational inference for PULSE

We provide update rules for the local and global variational parameters in PULSE.

1.1 Local variational method

As described in the Methods section in our main text, we used the local variational method [1]
to handle the sigmoid function in variational inference (VI). Indeed, the sigmoid function
involved in the Bernoulli distribution in Eq. 19 in the Methods section can be lower bounded
by

σ(ci) ≥ h(ci, ξi) = σ(ξi) exp
{

(ci − ξi)/2− χ(ξi)(c
2
i − ξ2

i )
}
, (1)

where

χ(ξ) =
1

2ξ

(
σ(ξ)− 1

2

)
, (2)

ci = wᵀ
1Xiw2, and ξi is a local variational parameter introduced to control the bound

tightness. Therefore, the log-likelihood of observations is also lower bounded, i.e.,

ln p(y1:N |X1:N ) = ln

∫
p(y1:N |X1:N ,Θ)p(Θ)dΘ

= ln

∫ ( N∏
i=1

p(yi|Xi,Θ)

)
p(Θ)dΘ

= ln

∫ (
exp

{
N∑
i=1

ciyi

}
N∏
i=1

σ(−ci)

)
p(Θ)dΘ

≥ ln

∫ (
exp

{
N∑
i=1

ciyi

}
N∏
i=1

h(−ci, ξi)

)
p(Θ)dΘ

= L(ξ1:N ). (3)

On one hand, we aim to perform variational inference based on the tractability of the
lower bound h(ci, ξi), matching the proposal distribution with the true posterior. On the
other hand, the variational parameters ξi’s need to be optimized by maximizing the lower
bound L(ξ1:N ) of the marginal likelihood, which achieves a better approximation after each
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update. Therefore, we adopted the variational expectation-maximization (VEM) algorithm
that solves both optimization problems simultaneously.

We first note that the “joint distribution”, denoted by p̂?, after lower bounding is not
a proper density function, but by normalization, the inequality may not hold any more.
Indeed, after normalizing, we get

p? =
1

A(ξ1:N )
p̂?, (4)

with

A(ξ1:N ) =
∑
y1:N

∫ (
exp

{
N∑
i=1

ciyi

}
N∏
i=1

h(−ci, ξi)

)
p(Θ)dΘ. (5)

Then, we can rewrite the lower bound L(ξ1:N ) as

L(ξ1:N ) = ln

∫
p?dΘ + lnA(ξ1:N )

= ELBOp?(q, ξ1:N ) + KL(q ‖ p?) + lnA(ξ1:N )

= ELBOp̂?(q, ξ1:N ) + KL(q ‖ p?), (6)

resulting in a similar decomposition of the marginal log-likelihood to that in conventional
VI.

As a consequence, we can perform the VEM as follows. (i) In the E-step where the
variational parameters ξ1:N are fixed, the standard variational inference is performed to
maximize the computationally feasible ELBOp̂?(q, ξ1:N ) with respect to q. Here, everything
in the mean-field variational inference (MFVI) keeps unchanged except replacing the sigmoid
functions in the joint distribution by their lower bounds given by Eq. 1. This computes the
approximate distribution best matching the true posterior, i.e., minimizing the KL diver-
gence between q and p? (see the last equation in Eq. 6). After the E-step, we approximately
tighten the gap between L(ξ1:N ) and the ELBO, and obtain L(ξ1:N ) ≈ ELBOp̂?(q, ξ1:N ).
(ii) In the M-step, we fix q and maximize the ELBO with respect to ξ1:N , which increases
L(ξ1:N ) accordingly, as it is obvious that the inequality L(ξ1:N ) ≥ ELBOp̂?(q, ξ1:N ) holds.
Using VEM, we update q’s and ξi’s iteratively, gradually increasing the log-likelihood lower
bound until reaching a local optimum and simultaneously yielding approximate posteriors
with performance guarantee.

According to above discussions, we first get the lower bound of the log-likelihood of the
conditional distribution over observations, i.e.,

ln

N∏
i=1

p(yi|Xi,w1,w2) =

N∑
i=1

yi lnσ(wᵀ
1Xiw2) + (1− yi) ln(1− σ(wᵀ

1Xiw2))

=

N∑
i=1

wᵀ
1Xiw2yi + lnσ(−wᵀ

1Xiw2)

≥
N∑
i=1

wᵀ
1Xiw2

(
yi −

1

2

)
− χ(ξi)(w

ᵀ
1Xiw2)2 + lnσ(ξi)−

1

2
ξi + χ(ξi)ξ

2
i ,

(7)

which serves as the basis for the inference of w1 and w2. Then based on this lower bound
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and the update principle of MFVI, the logarithm of q(w1) can be calculated as

ln q(w1) ∝ E−w1

[
−1

2
wᵀ

1Λw1 +

N∑
i=1

(
wᵀ

1Xiw2

(
yi −

1

2

)
− χ(ξi)(w

ᵀ
1Xiw2)2

)]

= −1

2
wᵀ

1

(
E[Λ] + 2

N∑
i=1

χ(ξi)XiE[w2w
ᵀ
2 ]Xᵀ

i

)
w1 +wᵀ

1

N∑
i=1

(
yi −

1

2

)
XiE[w2].

(8)

This indicates that q(w1) follows a Gaussian defined as

q
(
w1; µ̃w1

, Λ̃w1

)
= N

(
w1; µ̃w1

, Λ̃
−1

w1

)
, (9)

where

µ̃w1
= Λ̃

−1

w1

N∑
i=1

(
yi −

1

2

)
XiE[w2],

Λ̃w1 = E[Λ] + 2

N∑
i=1

χ(ξi)XiE[w2w
ᵀ
2 ]Xᵀ

i .

(10)

(11)

The update rules expressed in Eqs. 10 and 11 are batch based, which is inefficient for large
sample size or large feature dimension. We will transform this batch update into stochastic or
mini-batch one based on the stochastic variantional inference (SVI), scaling up the inference
algorithm to big data. More details are shown in Section 1.3.

1.2 Reparameterization

To perform VI over the spike-and-slab prior defined in Eq. 22 in the Methods section of
the main text, we adopted the reparameterization trick introduced in [4]. In particular, as
discussed in the Methods section, w2 can be reparameterized by two additional variables s
and w̄2 with

w2 = w̄2 ◦ s, (12)

where ◦ means element-wise product. It can be easily shown that the new variable con-
structed by w̄2jsj follows the same distribution as w2j . Then we can perform MFVI over
w̄2 and s. However, the solution derived from a direct application of the fully factorized
MFVI will deviate from the true posterior q(w2) a lot, as the former is unimodal while
the latter exponentially multimodal. To solve this problem, we followed [4], in which w̄2j

and sj are bundled together in the factorization. In particular, we assume the proposal
distributions factorize as

q(w̄2, s) =

M∏
j=1

q(w̄2j , sj), (13)

3



Given the MFVI principle, after substituting w2j with w̄2jsj in Eq. 7, we get

ln q(w̄2j , sj) ∝ E−{w̄2j ,sj}

[
N∑
i=1

wᵀ
1Xiw2

(
yi −

1

2

)
− χ(ξi)(w

ᵀ
1Xiw2)2

−1

2
λw̄2

2j + sj lnπ + (1− sj) ln(1− π)− 1

2

L∑
l=1

r−1
l

(
ŵ

(l)
2 −w2

)ᵀ (
ŵ

(l)
2 −w2

)]

∝ E−{w̄2j ,sj}

[
N∑
i=1

(
yi −

1

2

)
Xi1jw̄2jsj − χ(ξi)

X2
i1jw̄

2
2jsj + 2Xi1j

∑
k 6=j

Xi1kw2k

 w̄2jsj


−1

2
λw̄2

2j + sj lnπ + (1− sj) ln(1− π)− 1

2

L∑
l=1

r−1
l

(
w̄2

2jsj − 2ŵ
(l)
2j w̄2jsj

)]

= −1

2

(
2

N∑
i=1

χ(ξi)E
[
X2
i1j

]
sj + E[λ] +

L∑
l=1

r−1
l sj

)
w̄2

2j

+

 N∑
i=1

(
yi −

1

2

)
E[Xi1j ]− 2χ(ξi)E[Xi1j ]E

∑
k 6=j

Xi1kw2k

+

L∑
l=1

r−1
l E

[
ŵ

(l)
2j

] sjw̄2j ,(14)

where we define
Xi1j = wᵀ

1Xi1j , (15)

and 1j is a vector with all zeros but the j-th element one.
Since q(w̄2j |sj) ∝ q(w̄2j , sj), based on Eq. 14, we have

q(w̄2j |sj = 0) = N
(
w̄2j ; µ̃w̄2j |sj=0, λ̃

−1
w̄2j |sj=0

)
, (16)

where

µ̃w̄2j |sj=0 = 0,

λ̃w̄2j |sj=0 = E[λ].

(17)

(18)

Similarly, q(w̄2j |sj = 1) also follows a Gaussian given by

q(w̄2j |sj = 1) = N
(
w̄2j ; µ̃w̄2j |sj=1, λ̃

−1
w̄2j |sj=1

)
, (19)

where

µ̃w̄2j |sj=1 =λ̃−1
w̄2j |sj=1

(
N∑
i=1

(
yi −

1

2

)
E[Xi1j ]

− 2χ(ξi)E[Xi1j ]E

[∑
k 6=j

Xi1kw2k

]
+

L∑
l=1

r−1
l E

[
ŵ

(l)
2j

])
,

λ̃w̄2j |sj=1 =2

N∑
i=1

χ(ξi)E
[
X2
i1j

]
+ E[λ] +

L∑
l=1

r−1
l .

(20)

(21)

The stochastic updates of Eqs. 20 and 21 are shown in Section 1.3.
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To derive q(sj), we use the Bayes’ rule given by q(sj) = q(w̄2j , sj)/q(w̄2j |sj), yielding

q(sj) = Bern (sj ; π̃j) , (22)

where

π̃j =
ρ̃1j

ρ̃0j + ρ̃1j
, (23)

and

ln ρ̃0j = E[ln(1− π)]− 1

2
ln λ̃w̄2j |sj=0, (24)

ln ρ̃1j = E[lnπ] +
1

2
λ̃w̄2j |sj=1µ̃

2
w̄2j |sj=1 −

1

2
ln λ̃w̄2j |sj=1. (25)

The posterior statistics of w2j , including the expectation and variance, can be easily
calculated based on Eqs. 12, 17, 18, 20 and 21. In particular, the posterior statistics of
the marginal q(w̄2j) can be derived based on the laws of total expectation and variance,
respectively.

1.3 Stochastic variational inference

As discussed in the Methods section in the main text, to scale up the inference algorithm to
big data, we adopted SVI proposed in [3]. SVI updates variational parameters by summa-
rizing data points based on stochastic gradient optimization, in which the natural gradient
is used to account for measuring similarity between probability distributions. Thanks to the
conditional conjugacy introduced in our model, the natural gradient enjoys a simple form
without the calculation of the Hessian [3]. Then we can approximate the natural gradient by
randomly sampling a single or a mini-batch of samples, greatly reducing the computational
complexity per epoch. Here in our inference process, there are two steps where SVI needs
to be applied.

(i) For the update of q(w1) whose batch update is given by Eqs. 10 and 11, its stochastic
update is given by

φ
(t)
1 = (1− εt)φ(t−1)

1 + εt
N

B

∑
i∈I

(
yi −

1

2

)
XiE[w2],

φ
(t)
2 = (1− εt)φ(t−1)

2 + εt

(
−1

2
E[Λ]− N

B

∑
i∈I

χ(ξi)XiE[w2w
ᵀ
2 ]Xᵀ

i

)
,

(26)

(27)

where φ1 and φ2 are natural parameters in the exponential family form for multivariate
Gaussian, and I is a randomly sampled index set from 1 : N with size B. Then the
distribuiton parameters in q(w1) can be recovered by

µ̃w1
= −1

2
φ−1

2 φ1, (28)

Λ̃w1
= −2φ2. (29)

5



(ii) Similarly, for the update of q(w̄2j |sj = 1), its stochastic version is given by

ψ
(t)
1j =(1− εt)ψ(t−1)

1j + εt

(
N

B

∑
i∈I

(
yi −

1

2

)
E[Xi1j ]

− 2χ(ξi)E[Xi1j ]E

[∑
k 6=j

Xi1kw2k

]
+

L∑
l=1

r−1
l E

[
ŵ

(l)
2j

])
,

ψ
(t)
2j =(1− εt)ψ(t−1)

2j + εt

(
− N

B

∑
i∈I

χ(ξi)E
[
X2
i1j

]
− 1

2
E[λ]− 1

2

L∑
l=1

r−1
l

)
,

(30)

(31)

where ψ1j and ψ2j are natural parameters in the exponential family form of Gaussian. In
particular, the parameters in q(w̄2j |sj = 1) can be recovered by

µ̃w̄2j |sj=1 = −1

2
ψ−1

2j ψ1j , (32)

λ̃w̄2j |sj=1 = −2ψ2j . (33)

1.4 Update rules for other global variational parameters

For other variational parameters, we perform standard MFVI and have

q
(
Λ; W̃Λ, ν̃Λ

)
=W

(
Λ; W̃Λ, ν̃Λ

)
, (34)

q
(
π; α̃π, β̃π

)
= Beta

(
π; α̃π, β̃π

)
, (35)

q
(
λ; ãλ, b̃λ

)
= Gamma

(
λ; ãλ, b̃λ

)
, (36)

in which

W̃
−1

Λ = W−1
0 + E[w1w

ᵀ
1 ],

ν̃Λ = ν0 + 1,

α̃π = α0 +

M∑
j=1

E[sj ],

β̃π = β0 +M −
M∑
j=1

E[sj ],

ãλ = a0 +
M

2
,

b̃λ = b0 +
1

2
E [w̄ᵀ

2w̄2] ,

(37)

(38)

(39)

(40)

(41)

(42)

1.5 Update rules for the local variational parameters

In addition to calculating posteriors, we also need to determine the local variational pa-
rameters ξi’s. According to our discussion in Section 1.1, we seek to optimizing ξi’s by
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maximizing the lower bound L(ξ1:N ) in Eq. 3. This corresponds to the M-step, in which
the expected complete-data log-likelihood is maximized, i.e.,

Q
(
ξ, ξold

)
∝ E

[
N∑
i=1

lnσ(ξi)−
1

2
ξi − χ(ξi)

(
(wᵀ

1Xiw2)
2 − ξ2

i

)]

=

N∑
i=1

lnσ(ξi)−
1

2
ξi − χ(ξi)

(
Tr (AiCov[w1]) + E[w1]ᵀAiE[w1]− ξ2

i

)
,

(43)

in which
Ai = XiE [w2w

ᵀ
2 ]Xᵀ

i . (44)

By setting the derivate of Eq. 43 with respect to ξi to zero, we get

0 = χ′(ξi)
(
Tr (AiCov[w1]) + E[w1]ᵀAiE[w1]− ξ2

i

)
, (45)

indicating that

(ξnew
i )

2
= Tr (AiCov[w1]) + E[w1]ᵀAiE[w1]. (46)

Note that we can force ξi’s to be nonnegative without loss of generality due to the mono-
tonicity of χ(ξi) when ξi ≥ 0.

2 Update termination

To terminate the algorithm, we need to monitor the change of ELBO, whose computation
is intense and undesirable. In this study, we followed the suggestions proposed in [2], in
which we computed the average log predictive for a small held-out dataset to track ELBO
evolution. We terminated the updates once the change of average log predictive fell below
a threshold, indicating convergence. Here, we set tol = 10−5 and terminate the algorithm
when the proportion of change in ELBO is less than the tolerance. The inference algorithm
is summarized in Algorithm 1.
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Algorithm 1: Stochastic MFVI for PULSE

Input : Model p, hyperparameters Θ and learning rate εt.
Output : Posteriors q and local variational parameters ξ1:N .

1 Initialize variational parameters.

2 while not converged do
3 Randomly split the dataset into N/B mini-batches D1:N/B .
4 for i = 1 : N/B do
5 1. Update local variational parameters ξ1:N based on Eq. 46.
6 2. Based on mini-batch Di, update φ1, φ2, ψ1j and ψ2j according to

Eqs. 26, 27, 30 and 31, respectively, and then update the corresponding
global variational parameters based on Eqs. 28, 29, 32 and 33.

7 3. Update other global variational parameters according to Eqs. 17, 18, 23,
37 to 40, successively.

8 end
9 Calculate average log predictive for the held-out dataset.

10 end
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