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Abstract

Pregnancy is a vital period affecting both maternal and fetal health, with impacts on maternal metabolism, fetal growth, and
long-term development. While the maternal metabolome undergoes significant changes during pregnancy, longitudinal shifts in
maternal urine have been largely unexplored. In this study, we applied liquid chromatography–mass spectrometry-based untargeted
metabolomics to analyze 346 maternal urine samples collected throughout pregnancy from 36 women with diverse backgrounds and
clinical profiles. Key metabolite changes included glucocorticoids, lipids, and amino acid derivatives, indicating systematic pathway
alterations. We also developed a machine learning model to accurately predict gestational age using urine metabolites, offering a non-
invasive pregnancy dating method. Additionally, we demonstrated the ability of the urine metabolome to predict time-to-delivery,
providing a complementary tool for prenatal care and delivery planning. This study highlights the clinical potential of urine untargeted
metabolomics in obstetric care.
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Introduction
Accurate gestational age (GA) dating is essential for guiding pre-
natal care. Current methods, like using the last menstrual period,
can be unreliable due to imprecise recall and symptoms such
as early pregnancy bleeding that may be mistaken for a period
[1–3]. Although fetal ultrasound is the most precise method, it
is limited by timing and resource availability [4–8] and is most
effective when performed before 20 weeks [9–11]. Ultrasound also
requires advanced equipment and skilled personnel [6, 8, 12–14],
highlighting the need for a more accessible and precise GA dating
method, especially in diverse socioeconomic contexts.

Advances in omics technology offer new ways to explore
the dynamic changes in pregnancy, capturing shifts in the
maternal transcriptome, proteome, and metabolome [15, 16].
The metabolome, reflecting biochemical reactions, particularly
responds to metabolic changes during pregnancy [17, 18].
Investigation of longitudinal maternal metabolomic alternations
over the course of pregnancy has the potential to be a highly
informative approach for mechanistic investigation and a
breakthrough tool for GA dating. This approach has recently
attracted more attention [18–20] but has relied mostly on
maternal blood samples [18, 21–23]. The use of maternal urine for

GA dating and metabolic profiling has yet to be comprehensively
explored, and it may provide a cost-effective and non-invasive
method that could be easily translated into clinical settings. If
found to be useful, it would transform prenatal care, especially in
under-resourced regions. At present, the cost of implementing and
maintaining liquid chromatography–mass spectrometry (LC–MS)-
based untargeted metabolomics far exceeds that of ultrasound.
In the future, as specific metabolite biomarkers are identified
and validated, the clinical application of metabolomics could
shift toward more cost-effective approaches, such as targeted
metabolomics methods or simple immunoassays based on
these biomarkers could be developed. These methods require
significantly less infrastructure and expertise than LC–MS,
making them more accessible and affordable, particularly in
under-resourced settings.

So far, research has focused on metabolic biomarkers for risks
like preeclampsia and preterm birth (PTB) [24–31]. However,
metabolomic profiling throughout pregnancy could improve
understanding of maternal metabolic changes, allowing for better
risk stratification and insight into the pregnancy process [18,
32, 33]. In this study, we analyzed longitudinal urine samples
from 36 pregnant women, identifying numerous metabolites
linked to pregnancy progression. We examined shifts in maternal
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metabolic pathways and developed a model to predict GA,
identifying individualized metabolic alterations throughout
pregnancy.

Results
The SMART Diaphragm pregnancy cohort
This observational study aimed to determine if the urine
metabolome could identify metabolic changes and predict GA.
We analyzed urine samples from 36 pregnant women recruited in
San Francisco as part of the SMART Diaphragm (SMART-D) study
(Fig. 1a). SMART-D developed a vaginal device to detect cervical
changes for early PTB risk prediction. Samples, including urine
and cervicovaginal swabs, were collected longitudinally during
pregnancy and postpartum. For this study, at least one urine
sample was collected per trimester from each participant, result-
ing in 3–13 samples per participant (median: 10). Participants
in the SMART-D study represented diverse backgrounds. The 36
participants were of four races (Asian, Black, Pacific Islander, and
White), aged 21–39 years. Pre-pregnancy BMI ranged from 19.5
to 57.2, and parity ranged from 1 to 9 (Fig. 1b; Fig. S1a and b).
Detailed characteristics are in Table S1. Data is also shown at:
http://47.100.52.12:3838/smartd-shiny/.

The urine metabolome accurately reflects
metabolic alterations during pregnancy
Untargeted metabolomics was performed, identifying 20 314
chemical signals (peaks; Fig. 1c). After removing 44 outlier
samples, 302 samples remained for analysis (Fig. S1c). The batch
effect has been largely mitigated, as indicated by the PCA score
plot (Fig. S2), confirming high data quality. The SMART-D study’s
frequent sampling enabled detailed tracking of metabolome
changes throughout pregnancy (Fig. 1d).

PCA of peaks (QC RSD < 30%) showed a clear separation
between early and late GA samples, with postpartum samples
closely resembling early GA samples (Fig. 1e). Most participants
followed this overall pattern (Fig. S3). Significance analysis for
microarrays (SAM) and linear regression identified 14.87% of
peaks as significantly altered during pregnancy (Fig. 1f). Unsuper-
vised k-means clustering revealed three clusters correlated with
GA: cluster 1 (10–26 weeks), cluster 2 (26–32 weeks), and cluster
3 (32–42 weeks; Fig. 1g; Fig. S4). Consistent with PCA, postpartum
samples mostly fell into cluster 1. These findings confirm that
the urine metabolome reliably reflects metabolic shifts during
pregnancy.

Alterations of functional metabolic network and
pathways during pregnancy
An important strength of this study is the high-density sam-
pling, providing detailed insights into metabolic regulation at
each pregnancy stage. Samples were assigned to 14 GA ranges
based on sampling times, with each range including at least ten
subjects and samples to ensure robust analysis (Fig. 2a). Altered
peaks were identified using the Wilcoxon signed-rank test [false
discovery rate (FDR)-adjusted P < .05] compared to the baseline
(Fig. 2b). Notably, 84.83% of altered peaks remained significant
across all subsequent GA ranges, indicating a consistent pattern
of metabolic changes throughout pregnancy (Fig. S5).

The number of altered peaks significantly increased from early
to late pregnancy (Fig. 2b), aligning with the PCA and k-means
clustering results. After childbirth, the number of altered peaks

dramatically decreased compared to baseline. Based on the num-
ber of altered metabolic signatures, pregnancy metabolic sig-
nals were classified into four distinct periods: 10–18 weeks, 18–
26 weeks, 26–34 weeks, and 34–42 weeks. These findings corre-
spond with the clustering patterns observed (Fig. 1d).

To investigate changes in specific metabolic networks across
GA ranges, altered peaks were analyzed using PIUMet [34], iden-
tifying a network of altered metabolites for each range. All anno-
tated metabolites from PIUMet were then used to build a cross-
sectional correlation network (Fig. 2c). The network included 160
nodes (metabolites) and 1148 edges (correlations), with 80.4% of
annotated metabolites represented, suggesting dense interactions
and a coordinated regulatory network for metabolic changes
during pregnancy (Fig. 1d).

Using community analysis based on edge betweenness central-
ity [35, 36] revealed 20 clusters with a modularity of 0.30. Seven
clusters (> 5 modes) were selected for further analysis (Fig. 2c;
Fig. S6a). These clusters retained 76.25% of nodes and 96.95% of
edges from the original network, indicating that they captured
most of the correlations. These clusters likely represent physio-
logically related and correlated metabolites during pregnancy.

We analyzed alterations in the seven clusters during pregnancy
by cluster and peak intensity (Fig. S6b and c). Only clusters 2 and
3 showed consistent changes at both levels. Cluster 2, the largest
with 75 nodes and 963 edges, mainly includes lipids and lipid-
like molecules (51/75, Fig. 2d), indicating a lipid-related regula-
tory network during pregnancy. The top pathways for cluster 2
metabolites were steroid hormone biosynthesis, ovarian steroido-
genesis, cortisol synthesis, aldosterone synthesis, prolactin signal-
ing, aldosterone-regulated sodium reabsorption, and bile secre-
tion (Fig. 2d). Metabolite levels in cluster 2 increased throughout
pregnancy, with rapid increases at weeks 18 and 26, aligning with
periods defined in Figs 1d and 2b. Cluster 3, with five metabolites
(3-methylguanine, 7-methylguanine, L-phenylalanine, asymmet-
ric dimethylarginine, and (S)-3-hydroxy-N-methylcoclaurine), dis-
played similar trends. While no pathway mapped to more than
one metabolite, four of five metabolites related to amino acid
modification, suggesting cluster 3’s involvement in amino acid
metabolism (Fig. S6b and c).

Pathway enrichment analysis was conducted with PIUMet
for each GA range to investigate pregnancy-related metabolic
pathways further. Thirteen pathways showed enrichment in at
least one GA range, with most increasing during pregnancy (FDR-
adjusted P < .05, overlap ≥3; Fig. 2f). Six pathways were consistent
at both the metabolite and pathway levels (Fig. 2g and h). Five
of these six pathways overlapped with those in the regulated
network of cluster 2.

Prediction of gestational age using the urine
metabolome
Next, we explored whether the urine metabolome could estimate
GA, which could improve prenatal and neonatal care in cases of
uncertain dating. Urine samples were divided into training (16
subjects, 125 samples) and validation (20 subjects, 156 samples)
datasets (Fig. S1b). Demographics and birth characteristics did not
significantly differ between these datasets (P > .05, Table S1).

A random forest (RF) prediction model was built using 28
selected peaks identified through the Boruta algorithm and peak
shape filtering (Table S3; Fig. S7a). The training dataset was
utilized as the internal dataset to validate prediction accuracy
using the bootstrap method. The root mean squared error (RMSE)
between actual and predicted GA was found to be 2.35 weeks, and
adjusted R2 was 0.86 (Pearson correlation r = 0.93; P < 2.2 × 10−6;
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Figure 1. Study overview. (a) Study design. (b) Demographics of 36 participants. (c) Analysis plan. (d) Sampling time points per participant. (e) PCA of
urine samples by GA. (f) Volcano plot of altered peaks during pregnancy. (g) K-means clustering of 3020 altered peaks into three groups.

Fig. S7b). External validation yielded an RMSE of 2.66 weeks and
adjusted R2 of 0.79 (r = 0.89; P < 2.2 × 10−6; Fig. S7c), indicating the
model was not overfitting. Overall, our results demonstrated that
the urine metabolome may be useful for accurately predicting GA.

The impact of patient demographics on prediction accuracy
was also assessed. Maternal BMI, age, parity, and race were

included with 28 peaks to construct a prediction model.
The RMSE of this model was 2.70, and the adjusted R2 was
0.76, which demonstrated no significant differences com-
pared to the prediction model utilizing 28 peaks. The inclu-
sion of subject demographics minimally improved prediction
accuracy.
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Figure 2. Dynamic changes in the urine metabolome during pregnancy. (a) Participant and sample counts per GA range. (b) Altered peaks in each GA
range versus baseline. (c) Correlation network using PIUMet-annotated peaks. (d) Cluster 2 identified via community analysis shows consistent changes
at cluster and metabolite levels; pathway frequencies per metabolite on the right. (e) Cluster 2 changes during pregnancy. (f) Altered pathways per GA
range. (g) Heatmap of 6 metabolic pathway changes at the metabolite level. (h) Ridgeline plot of 6 metabolic pathway changes at the pathway level.

Prediction of gestational age at the individual
level
Our study demonstrated that the pregnancy urine metabolome,
using 28 peaks, can accurately predict GA. Peaks were annotated
through an in-house MS2 pipeline [37–39], with 875 of 20 314 peaks
annotated at level 1 or 2, though only 5 of the final 28 peaks were
annotated (Table S3). Using these 875 metabolites, we selected

32 for prediction, refining to 21 biomarkers after excluding those
with poor peak shapes and MS2 matches (Figs S8 and S9). Most
biomarkers were lipids and lipid-like molecules (Fig. 3a, Table S4)
[40], aligning with maternal plasma findings [18, 41–43].

Most biomarkers ranked highly in the prediction model (Fig. 3a;
Fig. S10). The 21 metabolite biomarkers achieved similar accuracy
to the peak model, with adjusted R2 of 0.81 (r = 0.90, P < 2.2 × 10−6)
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Figure 3. Urine metabolomics predicts GA at the individual level. (a) Twenty-one biomarkers selected. (b and c) GA prediction aligns closely with clinical
values in internal (b) and external (c) validation datasets. (d) Individual prediction accuracy. (e) Continuous characteristics do not affect accuracy. (f)
Outlier SF1562 in birth weight achieves good accuracy.

for internal validation and 0.77 (r = 0.87, P < 2.2 × 10−6) for external
validation datasets (Fig. 3b and c). The RMSE was 2.89 weeks for
internal and 2.97 weeks for external validation (Fig. 3b and c). A
1000-time permutation test confirmed no overfitting (Fig. S11).
Notably, model performance improved over pregnancy, with RMSE
decreasing from the first to the third trimester for both training
(4.71 in T1, 2.81 in T2, 2.82 in T3) and validation datasets (7.30
in T1, 3.14 in T2, 2.81 in T3; Fig. 4c and d). There was also no
significant difference in accuracy between the metabolite and
peak models, particularly in the validation dataset (RMSE = 2.97
versus 2.66 weeks, adjusted R2 = 0.77 versus 0.79).

These results indicate that urine metabolites can effectively
predict GA and have promising clinical applications. When
applied to individual participants in the external validation
dataset, 16 out of 20 achieved an adjusted R2 >0.75 (Fig. 3d;
Fig. S12, Table S5), demonstrating the robustness of our model for
individual predictions. Our cohort, which includes women with
diverse demographic and clinical characteristics (Fig. S1a and b),
suggests the model’s utility across varied backgrounds.

We then assessed the impact of individual characteristics on
prediction accuracy, calculating correlations between RMSE/ad-
justed R2 and continuous variables. Surprisingly, continuous fac-
tors showed no significant correlation with prediction accuracy
(all r < 0.5, all P > .05; Fig. 3e). Notably, three participants were
outliers for birth weight, BMI, and parity. Participant S1760 had a
BMI of 57.23 (mean: 27.09, P < .001) with high prediction accuracy
(RMSE = 1.05, adjusted R2 = 0.93; Fig. 3d). Participant S1762, with
parity of nine (mean: 2.92, P < .001), also achieved good accuracy
(RMSE = 2.94, adjusted R2 = 0.90; Fig. 3d). For S1562, with a birth
weight of 6.185 kg (mean: 3.397 kg, P < .001), internal valida-
tion accuracy was similarly high (RMSE = 3.70, adjusted R2 = 0.95;
Fig. 3f).

We also examined whether categorical characteristics influ-
enced prediction accuracy. Results indicated that prediction accu-
racy was unaffected by these factors (Fig. S13, analysis of variance
test, all P > .05). Overall, these findings demonstrate that the GA
prediction model based on metabolite biomarkers is highly robust
and adaptable to individual diversity.
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Figure 4. Urine metabolome predicts individual time-to-delivery. (a) Overlap of metabolites between GA and time-to-delivery models. (b) Twenty-one
biomarkers for time-to-delivery model. (c and d) Predicted time-to-delivery closely matches actual values in internal (c) and external (d) validations. (e)
Individual prediction accuracy.

Prediction of time to delivery using the urine
metabolome
We next evaluated whether the urine metabolome could pre-
dict time-to-delivery, defined as the difference between GA at
sample collection and GA at delivery, independent of ultrasound
estimates. Participants with scheduled Cesarean sections were
excluded, leaving 20 participants (Table S2). The model included
21 metabolites, 18 of which overlapped with those in the GA
prediction model (Fig. 4a and b; Table S4). Predicted values aligned
well with actual values in both the training (RMSE = 2.58 weeks;
adjusted R2 = 0.83; r = 0.94, P < 2.2 × 10−6; Fig. 4c) and validation
datasets (RMSE = 2.87; adjusted R2 = 0.77; r = 0.88, P = 4.91 × 10−15;
Fig. 4d). A permutation test confirmed no overfitting (Fig. S14).
Prediction accuracy was also unaffected by patient demographics,
similar to the GA model (Fig. S15a). These findings show that
the time-to-delivery model is robust and effective across diverse
individual characteristics.

Altered metabolic signatures during pregnancy
We also examined the biological function of the 24 metabolite
markers. Most of the markers (9 of 24; 8 are unknown) were lipids

and lipid-like molecules (primarily hormones, Table S4; Fig. S15b),
aligning with earlier findings at the peak level.

To capture shifting metabolic signatures, hierarchical and
fuzzy c-mean clustering grouped the 24 markers into two clusters
with contrasting regulation patterns (Fig. 5a–c). The first group
showed downregulation during pregnancy, returning to normal
postpartum (Fig. S16a), while the second group increased with
pregnancy and normalized postpartum (Fig. S16b). This second
group was enriched in pathways related to glucocorticoid and
mineralocorticoid biosynthesis, growth hormones, and lipid
metabolism. Given progesterone’s clinical relevance in PTB
treatment [44–47], other similarly regulated steroids may serve
as diagnostic or therapeutic targets.

Correlation analysis across GA periods revealed significant
metabolomic shifts as the pregnancy progressed (Fig. 5d). Early
pregnancy showed a positive correlation between metabolite
intensity and GA, shifting to a negative correlation in later stages,
indicating that urine metabolome alterations may help predict
delivery timing.

Further analysis showed positive correlations among many
markers and delivery-related factors, such as maternal BMI
and birth weight, suggesting co-regulated metabolic pathways,
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Figure 5. Integrative analysis of GA markers. (a) Marker clustering. (b and c) Biomarker clustering: one group shows downregulation returning to normal
postpartum (b); another shows upregulation, then downregulation postpartum (c). (d) Correlation of metabolome changes across GA and proximity to
postpartum. (e) Correlations between markers.

with the exception of a negative correlation between BMI and
pregnenolone (Fig. 5e). This aligns with studies linking obesity
to higher PTB risk [48–50], suggesting that pregnenolone levels
might aid in GA prediction and preterm risk assessment.
Although BMI showed no significant correlation with most lipid
biomarkers (except BMI-pregnenolone, FDR adjusted P < .05), a
non-significant trend of negative correlation with other lipids
was observed (Fig. S17a).

Discussion
Accurate GA estimation is essential for preventive prenatal care
and timely interventions as maternal and fetal needs change
throughout pregnancy [18, 51]. While metabolic changes in
pregnancy have been extensively studied using blood samples [16,
18, 52, 53], the comprehensive dynamics of the pregnancy urine
metabolome remain less explored. In this study, we used compre-
hensive metabolic profiling of urine samples to better understand
prenatal and postnatal metabolic changes in maternal urine. We
developed models to predict GA and time-to-delivery with strong
predictive accuracy at both cohort and individual levels (training:
adjusted R2 = 0.81, RMSE = 2.89; validation: R2 = 0.77, RMSE = 2.97).
The GA model tended to overestimate in early pregnancy
and underestimate in later stages, possibly due to diverse

biological processes that require further study in larger cohorts.
Overall, our findings demonstrate the potential of the urine
metabolome for accurate GA estimation and time-to-delivery
prediction.

Pregnenolone, progesterone, and corticoids were all upreg-
ulated in the glucocorticoid pathways during pregnancy, and
related metabolites used in the time-to-delivery prediction model
were enriched for glucocorticoid and CMP-N-acetylneuraminate
biosynthesis pathways. These hormones have been reported to
play key roles in pregnancy regulation [45–47]. For instance,
progesterone has been approved for the treatment of amenorrhea,
metrorrhagia, and infertility [54–56]. In our previous study of
maternal plasma collected in an independent cohort, we also
identified tetrahydrodeoxycorticosterone, estriol glucuronide,
and progesterone as markers for GA estimation [18]. Other
identified derivatives in the same steroid hormone group of
estrogens and progesterone derivatives, as well as unchar-
acterized steroid-like compounds discovered in this study,
may also play roles in pregnancy, although their functions
remain unclear. Furthermore, N-acetylmannosamine and N-
acetylneuraminate were both significantly upregulated in the
CMP-N-acetylneuraminate biosynthesis pathway, although the
impact of these signaling molecules on pregnancy-related
processes remains to be explored.
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As a proof of principle, our results show that urine metabolomic
profiles can be used to track gestation throughout pregnancy. By
applying an RF model, we successfully predicted GA based on
21 urine metabolites (Fig. 3a), including diverse glucocorticoids,
lipids, glucuronide, and amino acid derivatives, indicating
comprehensive regulation of glucocorticoid biosynthesis and
CMP-N-acetylneuraminate biosynthesis by pregnancy.

Compared to previous research [57, 58], which employed tar-
geted or restricted metabolomic approaches, our study utilizes
untargeted LC–MS to capture a broader spectrum of metabolic
features. By analyzing longitudinal samples across the entire
pregnancy (11–40 weeks), we identified key metabolic shifts and
constructed a GA prediction model. While prior studies demon-
strated the feasibility of urinary metabolomics for GA estima-
tion, our study advances this field by offering enhanced predic-
tive performance and a more comprehensive understanding of
pregnancy-associated metabolic changes.

While our study provides valuable insights into the potential of
urine metabolomics for GA prediction, our study still has several
limitations that need to be addressed in future studies. First,
the cohort size is relatively small (36 participants), which limits
the generalizability of the findings. Future studies should aim
to validate these findings in larger and more diverse cohorts to
ensure broader applicability and to assess the robustness of the
model across different populations and settings. Additionally, To
mitigate overfitting risks, we used the Boruta algorithm for robust
feature selection and employed cross-validation within the train-
ing dataset. However, the small cohort size and high-dimensional
nature of metabolomics data could still pose overfitting risks,
warranting further validation in larger, independent cohorts.

Second, while our analysis identified significant metabolites
and pathways associated with GA, and we took additional steps
to enhance the quality of selected biomarkers by excluding
metabolites with poor peak shapes or weak MS2 matches,
the biological roles of some unannotated metabolites remain
unclear. This underscores the need for further research to
characterize these unknown features and explore their potential
contributions to pregnancy-related metabolic changes in urine
samples. Future studies could leverage advanced algorithms
and emerging methodologies to improve the characterization
and annotation of these unannotated metabolites. Additionally,
although only a small proportion of peaks were annotated, the
metabolites selected for the predictive model underwent rigorous
statistical validation using the Boruta algorithm and cross-
validation to minimize overfitting and maximize reproducibility.
We also excluded metabolites with poor peak shapes or weak
MS2 matches to enhance the quality of the selected biomarkers
further.

Third, while we controlled for key demographic and clinical fac-
tors such as BMI and parity, other potential confounders, includ-
ing dietary intake, medication use, and environmental exposures,
were not accounted for due to the lack of available data. These
factors may influence metabolomic profiles and could contribute
to variability in our findings. Future studies should aim to incor-
porate detailed dietary, medication, and environmental exposure
data to comprehensively assess their effects on metabolomic
profiles and improve the robustness of predictive models.

Fourth, although normalization was applied to minimize vari-
ability, residual batch effects cannot be completely excluded,
particularly given the complexity of untargeted metabolomics
datasets. Advanced techniques may further reduce batch-related
noise in future studies.

Fifth, while the FDR-adjusted threshold minimizes false pos-
itives, it may still overlook subtle but biologically meaningful
changes, particularly in high-dimensional datasets where signal-
to-noise ratios can vary.

Finally, different omics data provide unique insights into
the human body, each capturing distinct aspects of biological
processes. The findings presented here are based solely on
metabolomics data. In the future, integrating metabolomics
data with other omics layers, such as proteomics and genomics,
could significantly enhance the accuracy and robustness of
GA estimation. Indeed, several studies have demonstrated that
combining metabolomics with other omics data in blood samples
improves GA prediction accuracy [33, 59]. We anticipate that
integrating multi-omics data from urine and other biological
samples will not only enhance the precision of GA prediction
but also provide a more comprehensive understanding of the
molecular mechanisms underlying pregnancy progression.

The characterized alterations in the maternal urine
metabolome showed a strong correlation with GA and pregnancy
progression. Accurate and convenient GA determination and
time-to-delivery prediction can enhance fetal development
monitoring and support timely interventions to improve maternal
and infant health. Monitoring maternal metabolic changes and
their association with GA could offer deeper insights into fetal
development regulation and pregnancy disorders. The non-
invasive and accessible nature of urine metabolomics makes
it a valuable tool for GA assessment in diverse clinical settings,
especially in resource-limited areas with restricted access to early
prenatal care.

Methods
Participant enrolment and urine sample
collection
A total of 346 urine samples were collected from 36 ethnically
diverse women throughout pregnancy (11.8–40.7 weeks) and post-
partum (Table S1). The information for ‘duction’, ‘child sex’, and
‘child weight’ is missing for 10 participants in our cohort due
to incomplete data collection (Table S1). Samples were collected
longitudinally in two batches (Table S6), with GA dating based on
American Congress of Obstetricians and Gynecologists guidelines.
Urine samples were collected as random spot urine samples at
various time points during pregnancy and postpartum. No 24-
hour urine collections were performed.

Chemical material and internal standard
preparation
MS-grade solvents (water, methanol, acetonitrile) were from
Fisher Scientific. MS-grade acetic acid and analytical-grade
internal standards were from Sigma Aldrich. The internal stan-
dard mixture (acetyl-d3-carnitine, phenylalanine-3,3-d2, tiapride,
trazodone, reserpine, phytosphingosine, and chlorpromazine) was
diluted 1:50 with a 3:1 acetonitrile-water solution for HILIC and
with water for RPLC.

Urine sample preparation
Thawed urine samples were centrifuged at 17 000 rcf for 10 min-
utes; 250 μL of supernatant was diluted with 750 μL of internal
standard. After a 10-second vortex and another 10-minute cen-
trifuge at 17 000 rpm (4◦C), the supernatant was used for LC–
MS. A pooled QC sample was injected every 10 samples to ensure
consistent retention time and signal intensity. All samples were
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randomized during sample preparation and data acquisition to
minimize bias introduced by batch effects or systematic trends.

Liquid chromatography–mass spectrometry data
acquisition
A Hypersil GOLD HPLC and guard columns (Thermo Scientific, San
Jose, CA) were used for RPLC. The mobile phases were 0.06% acetic
acid in water (A) and methanol with 0.06% acetic acid (B), with a
flow rate of 0.25 mL/min and backpressure of 120–160 bar at 99%
phase A. A linear gradient from 1% to 80% phase B was applied
>9–10 minutes. The column was heated to 60◦C, and the sample
injection volume was 5 μL.

HILIC experiments were performed using a ZIC-HILIC column
(Merck Millipore) and mobile phase solvents consisting of 10 mM
ammonium acetate in 50/50 acetonitrile/water (A) and 10 mM
ammonium acetate in 95/5 acetonitrile/water (B). Metabolites
were eluted from the columns at 0.5 ml/min using a 1–50% phase
A gradient >15 min.

The Thermo Q Exactive Hybrid Quadrupole-Orbitrap Plus and
Q Exactive mass spectrometers (Xcalibur, Thermo Scientific, San
Jose, CA, USA) were operated in full MS-scan mode for data acqui-
sition, covering an m/z range of 50 to 1000. For MS1 acquisition, the
instruments were set with a scan rate of ∼1.5 Hz, a resolution of
10 000 (at m/z 127), an injection time of 50 ms, and an automatic
gain control (AGC) target of 3 × 106. MS/MS spectra for the QC
sample were acquired using the top 10 parent ions, fragmented at
normalized collision energies (NCE) of 25 and 50, with an injection
time of 100 ms and an AGC target of 1 × 105.

Data processing and cleaning
MS raw data were converted to .mzXML (MS1) and .mgf (MS2)
formats using ProteoWizard (Table S7). Peak detection and align-
ment were done via an in-house pipeline [37], producing an MS1

peak table. Across the dataset, an average of 12.5% of data points
per feature were missing prior to imputation. Features with >20%
missing values in QC samples were excluded from the analysis to
minimize the potential for bias. We also excluded samples with
>50% missing values (outlier samples) and imputed remaining
gaps using the k-nearest neighbors algorithm (KNN). We selected
KNN imputation as it is a widely used method in metabolomics
studies due to its ability to estimate missing values based on the
similarity of observed features [60]. Outlier samples were defined
as the samples with >50% missing values. Outlier samples were
removed to prevent potential biases in downstream statistical
analyses and machine learning modeling. These samples exhib-
ited aberrant metabolomic profiles likely caused by technical
errors, such as incomplete sample preparation, instrument fluc-
tuations, or contamination. Peak intensity was normalized by
mean, with batch mean ratios applied for data integration. To
account for variability in urine concentration, the mean normal-
ization was applied to the dataset. This approach was selected due
to its simplicity and effectiveness in controlling for systematic
biases across samples. Although more specific methods, such
as probabilistic quotient normalization (PQN), creatinine adjust-
ment, or specific gravity correction, are available, we chose the
mean normalization to maintain consistency with prior studies
and ensure robust analysis across a diverse cohort [18].

General statistical analysis and data
visualization
Most statistical analysis and data visualization were conducted
in R (version 3.6.0, Table S8). Before analysis, data were log10
transformed and auto-scaled. Categorical data are reported as

counts and percentages, while continuous variables are presented
as the mean ± standard deviation or standard error of the mean.
Due to the right-skewed distribution of most peaks, nonpara-
metric methods were used for statistical tests, with all P-values
adjusted using the FDR. The FDR-adjusted p-value threshold of
0.05 was selected to balance sensitivity and specificity in identify-
ing significant features while controlling for the high-dimensional
nature of metabolomics data. This threshold is widely accepted
in metabolomics and omics studies as a rigorous standard for
multiple testing correction.

SAM test and linear regression model to detect
overall altered peaks during pregnancy
To identify peaks that significantly changed with GA, we applied
a SAM and a linear regression model [18, 61]. SAM uses permu-
tations of repeated measurements to estimate the FDR for peaks
exceeding an adjustable threshold. The linear regression model
was built using the R ‘lm’ function, adjusting for acquisition batch,
BMI, maternal age, parity, and race. Peaks with an FDR-adjusted
P < .05 were considered significant.

K means consensus-clustering
Unsupervised K-means consensus clustering was conducted
using the R packages CancerSubtypes and ConsensusClusterPlus.
Sample clusters were identified with K-means clustering,
Euclidean distance, and 1000 resampling repetitions across 2
to 6 clusters. The empirical cumulative distribution function
plot suggested 2 or 3 clusters as optimal for all urine samples.
Consensus matrix heatmaps also indicated that 2, 3, and 4
clusters showed good separation. To determine the optimal
cluster number, we extracted silhouette scores using the
silhouette_SimilarityMatrix function. Comparing k = 2, 3, and
4, we found that k = 3 provided the highest clustering stability
(Fig. S4).

PIUMet analysis
PIUMet, a network-based tool, links peaks to potential metabo-
lites and related dysregulated molecular mechanisms, effectively
converting peak data into network information [34]. For each GA
range, altered peaks were saved as .txt files and uploaded to
the PIUMet website. Results from PIUMet were then processed
through an in-house pipeline, where annotation results across
GA ranges were combined. Peaks appearing in fewer than two GA
ranges were removed, and mean values of matched peaks were
used as quantitative values for each metabolite.

Correlation network and community analysis
For the combined dataset of metabolites and clinical variables,
correlations between variables were calculated, and only pairs
with an absolute correlation >0.5 and FDR-adjusted P < 0.05
were used to construct correlation networks. Community
analysis was performed with edge betweenness-based detection
(Girvan–Newman method). This method iteratively removes
edges with the highest edge betweenness, which likely connect
separate modules until individual nodes remain. The result is a
dendrogram, with leaves as individual nodes and the root as the
whole network.

Modularity analysis was used to identify communities within
the network, maximizing modularity at each iteration to identify
statistically significant structures (Fig. S7a). Only clusters with at
least three nodes were retained for further analysis.
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Kyoto Encyclopedia of Genes and Genomes
pathway enrichment analysis
Pathway enrichment analysis was conducted using the KEGG
database, a widely used resource in metabolomics, which initially
contains 275 pathways divided into metabolic and disease path-
ways based on the ‘Class’ information. Enrichment analysis was
performed using a hypergeometric distribution test, with P-values
adjusted by the FDR method and a significance cutoff of .05.

Metabolite annotation
The metabolite annotation was performed using the metID
package [38]. For the metabolite annotated using the in-house
database [39, 62], the annotations are level 1 according to MSI
[63]. For metabolites annotated using the public databases, the
annotation is level 2, according to MSI [63].

The random forest prediction model
Feature selection. The Boruta algorithm was used to identify
biomarkers by creating shadow features through shuffling and
then comparing them to real features via RF classification,
repeated 100 times for robustness. Selected features served as
potential biomarkers for the RF model.

Parameter optimization. Default settings were used except for
ntree (trees) and mtry (variables per split) in the RF model, opti-
mized in the training set by minimizing MSE.

GA prediction model. Samples from batch 1 (16 subjects, 125
samples) were used for training, and batch 2 (20 subjects, 156
samples) for validation. Feature selection was performed on the
training dataset, followed by the construction of the RF model. A
linear regression model was then applied between predicted and
actual GA to correct predictions (Fig. S17b). This two-part model
was validated on external samples, with RMSE and adjusted R2

used to assess accuracy.
1000 bootstraps resampled 63% of training data, using 37% for

validation; final GA predictions averaged per sample, calculating
MSE and adjusted R2.

Time-to-delivery prediction model. Calculated as weeks between
sample and delivery dates, using the same approach as the GA
model.

Permutation test
First, responses (GA or time to delivery) were randomly shuf-
fled in the training and validation datasets. Potential biomarkers
were selected, and RF parameters were optimized in the training
dataset. An RF model was then built with selected features and
applied to the validation dataset, yielding null RMSE and adjusted
R2 values. This process was repeated 1000 times to generate
distributions of null RMSE and adjusted R2 values. Using max-
imum likelihood estimation, these values were modeled with a
Gamma distribution, and cumulative distribution functions were
calculated to derive p-values for the actual RMSE and adjusted R2.

Fuzzy c-means clustering
The fuzzy c-means clustering algorithm was used to classify
metabolite biomarkers by GA. Samples were grouped into time
ranges from 11 to 41 weeks in two-week increments, with post-
partum samples assigned to a ‘PP’ group. For each time range, the
mean intensity of each metabolite was calculated, creating a new
dataset with 16 observations.

First, we optimized the parameter ‘m’ using Mfuzz and deter-
mined the optimal cluster number based on the within-cluster

sum of squared errors. Using default parameters, fuzzy c-means
clustering was performed, and only features with a membership
score > 0.5 were retained. No smoothing was applied to the output
results.

Key points

• This study applied Liquid chromatography–mass
spectrometry-based untargeted metabolomics and
metabolic peak-based pathway analysis to analyze
longitudinal changes in maternal urine, highlighting
significant alterations in glucocorticoids, lipids, and
amino acid derivatives during pregnancy.

• A machine learning model based on urinary metabolites
accurately predicts gestational age (GA), offering a non-
invasive pregnancy dating method that is especially use-
ful in resource-limited settings.

• The findings underscore the potential clinical utility of
urine metabolomics in improving GA estimation and
monitoring maternal metabolic health.

• The study provides a detailed, comprehensive charac-
terization of the maternal urine metabolome, which
could enhance prenatal care and maternal–fetal health
management.
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