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TidyMass2: advancing LC-MS untargeted
metabolomics through metabolite origin
inference and metabolic feature-based
functional module analysis

A list of authors and their affiliations appears at the end of the paper

Untargeted metabolomics provides a direct window into biochemical activ-
ities but faces critical challenges in determining metabolite origins and inter-
preting unannotated metabolic features. Here, we present TidyMass2, an
enhanced computational framework for Liquid Chromatography-Mass Spec-
trometry (LC-MS) untargeted metabolomics that addresses these limitations.
TidyMass2 introduces three major innovations compared to its predecessor,
TidyMass: (1) a comprehensive metabolite origin inference capability that
traces metabolites to human, microbial, dietary, pharmaceutical, and envir-
onmental sources through integration of 11 metabolite databases containing
532,488 metabolites with source information; (2) a metabolic feature-based
functional module analysis approach that bypasses the annotation bottleneck
by leveraging metabolic network topology to extract biological insights from
unannotated metabolic features; and (3) a graphical interface that makes
advanced metabolomics analyses accessible to researchers without pro-
gramming expertise. Applied to longitudinal urine metabolomics data from
human pregnancy, TidyMass2 identified diverse metabolites originating from
human, microbiome, and environment, and uncovered 27 dysregulated
metabolic modules. It increased the proportion of biologically interpretable
metabolic features from 5.8% to 58.8%, revealing coordinated changes in
steroid hormone biosynthesis, carbohydrate metabolism, and amino acid
processing. By expanding biological interpretation beyondMS2 spectra-based
annotated metabolites, TidyMass2 enables more comprehensive metabolic
phenotyping while upholding open-source principles of reproducibility, tra-
ceability, and transparency.

Metabolomics has emerged as a powerful approach in biomedical
research, enabling comprehensive profiling of small molecules that
serve as direct signatures of biochemical activities compared to
genomics, transcriptomics, and proteomics1–6. The human metabo-
lome represents a complex intersection of small molecules derived

fromdiverse origins, such as endogenousmetabolism, gutmicrobiota,
environmental exposures, dietary intake, andpharmaceuticals, eachof
which can independently and significantly influence human health7–12.
Within this intricate landscape, the gut microbiome alone produces
thousands ofmetabolites that can enter circulation to impact systemic
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health7,8,13. Similarly, xenobiotics from the environment, bioactive
compounds from foods and botanical sources, and pharmaceutical
agents introduce additional layers of metabolic complexity7–12. How-
ever, the field faces significant challenges in data interpretation and
biological contextualization that limit its full potential.

Despite significant advances in LC-MS untargeted metabolomic
technologies, identifying the origin of metabolites remains
challenging14,15. This limitation significantly hinders our ability to
interpret metabolomic data in the context of host-microbiome inter-
actions and environmental exposures. Several computational
approaches have attempted to address this limitation, including
MicrobeMASST16 and MetOrigin217. However, MicrobeMASST is
designed for specific microbiota-derived metabolite analysis and is
restricted by its reliance onMS2 spectramatching, leaving themajority
ofmetabolic featureswithout the source information since only 10-15%
of metabolic features typically have MS2 spectra18,19. Meanwhile,
MetOrigin2 can only analyze data from a limited set of metabolite
databases and lacks integration with comprehensive metabolomic
workflows17.

Moreover, metabolite annotation poses a significant challenge in
LC-MS untargeted metabolomics, despite the development of
numerous advanced methods14,20,21. Current MS2 spectral-based
approaches typically annotate only approximately 10%-20% of detec-
ted metabolic features22, severely limiting our understanding of dys-
regulated metabolic functions in physiological and pathological
situations. Network-based approaches such as Mummichog23 and
PIUMet24 have attempted to address this limitation through alternative
annotation strategies. However, both mummichog and PIUMet rely
solely on mass-to-charge ratios (m/z) for rough metabolite annotation
without incorporating retention time (RT) information, a critical
parameter that could substantially reduce annotation redundancy and
improve accuracy.

We previously developed TidyMass, a comprehensive R-based
computational framework for LC-MS untargeted metabolomics that
addressed issues of reproducibility, traceability, and transparency
through a consistent tidy data structure and modular workflow25.
TidyMass provided integrated solutions for data processing, data
cleaning, statistical analysis, and pathway analysis, but still faced lim-
itations in metabolite origin inference and in extracting comprehen-
sive biological insights fromunannotatedmetabolic features. Here, we
present TidyMass2, a significant advancement of the original frame-
work with several critical enhancements that address the aforemen-
tioned challenges in LC-MS untargeted metabolomics data analysis.

TidyMass2 introduces several major improvements over its pre-
decessor, TidyMass. First, we have expanded functionality through
new functions and packages, most notably the massdatabase
package26, which facilitates seamless management and integration of
metabolite, reactions, and pathway databases with existingmetabolite
annotation (metid27) and pathway analysis (metpath) packages in the
TidyMass ecosystem. Second, we have built a comprehensive meta-
bolite database (MetOriginDB) containing 532,488 metabolites with
biological source information, enabling sophisticated origin inference
for metabolites. Third, we have implemented an improved metabolic

feature-based functional module analysis, which provides more com-
prehensive insights into dysregulated metabolic networks and mod-
ules without requiringMS2 spectra-basedmetabolite annotation for all
dysregulated metabolic features. Finally, we have developed an intui-
tive Shiny application that operates across major operating systems
(Windows, macOS, Linux), making TidyMass2 accessible to research-
ers without extensive programming experience while maintaining
compatibility with both personal computers and server environments.

Additionally, TidyMass2 remains entirely open-source, with all
code and databases (metabolites, pathways, and metabolic network)
freely available (https://github.com/tidymass; https://www.tidymass.
org/databases/), promoting reproducible and transparent metabo-
lomics data analysis within the scientific community. Additionally, we
also provided the online TidyMassShiny version at https://
tidymassshiny.jaspershenlab.com. We anticipate that these enhance-
ments will substantially benefit LC-MS untargeted metabolomics
research across diverse biomedical applications.

Results
Development and Enhancements in TidyMass2
TidyMass2 represents a significant evolution from its predecessor,
TidyMass25, leveraging its robust foundation while incorporating a
suite of substantial improvements designed to overcome existing
limitations in the analysis of LC-MS untargeted metabolomics data.
These enhancements encompass key areas such as expanded func-
tionality, enhanced usability, and more powerful analytical cap-
abilities, collectively transforming TidyMass2 into a considerablymore
comprehensive and versatile computational framework for research-
ers in the field (Table 1 and Fig. 1a). TidyMass2 addresses the growing
complexities and demands of modern untargeted metabolomics
experiments, offering a more streamlined and insightful approach to
data analysis and interpretation.

We have developedmassdatabase, a new R package that serves as
a central hub for online and public metabolite, pathway, and reaction
database management26. This package enables users to efficiently
access, download, and manipulate common online metabolomics
databases, including HMDB28, KEGG29, LipidMaps30, DrugBank31,
FooDB (www.foodb.ca), WikiPathways32, and so on (Fig. 1a and Sup-
plementary Table 1). The streamlined integration with existingmetid27

and metpath packages creates a seamless workflow from raw data
processing to biological interpretation. This integration significantly
reduces the technical barriers to comprehensive metabolite annota-
tion and pathway analysis.

Unlike genes and proteins, metabolites lack a universal identifier
system within the community33. In TidyMass2, we incorporate a che-
mical identifier conversion system that operates across multiple
metabolite ID systems, including HMDB, KEGG, PubChem, ChEBI, CAS,
and InChIKey (Fig. 1a). We have integrated three complementary ser-
vices to maximize coverage and accuracy: Chemical Translation
Service34, ChemSpider35, and a Large Language Model (LLM) approach
based on ChatGPT. This multi-layered approach provides compre-
hensive chemical identifier conversion, a crucial functionality for
cross-database analyses that was previously unavailable in TidyMass.

Table 1 | Comparison of key capabilities: TidyMass vs. TidyMass2

Capability TidyMass TidyMass2

Metabolite databases with metabolite source
information

N.A. MetOriginDB: 532,488 metabolites with source information (81,461 metabolites with
MS2 spectra)

Pathway databases 2 databases 4 databases

Metabolite origin inference N.A. Built-in function in the metabolite annotation pipeline

Chemical ID conversion N.A. Multi-service system with LLM integration

User interface Command-line only Command-line and web interface

Metabolic feature-based functional module analysis N.A. Yes
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To enhance accessibility for researchers without programming
expertise, we developed the TidyMassShiny package in TidyMass2,
which is a web-based interface that encapsulates all functions and
modules available in the command-line version of TidyMass2 (Fig. 1b).
TidyMassShiny provides an intuitive graphical interface for the com-
plete LC-MS untargeted metabolomics data processing and analysis
workflow, from raw data processing to biological interpretation.
Additionally, the Shiny application supports deployment on personal
computers, cloud services, and local servers (Fig. 1b and Methods),
with detailed documentation for installation and operation across
different platforms. This development significantly lowers the techni-
cal barriers to utilizing advanced metabolomics data analysis tools.

A major advancement in TidyMass2 is the integration of meta-
bolite source information across 11 carefully curated metabolite
databases, which is essential for metabolite origin inference (Methods
and Fig. 1a). The final comprehensive metabolite database (MetOr-
iginDB) we developed here categorizes metabolites according to their
origins, such as human endogenous metabolism, gut microbiome,
dietary intakes, pharmaceutical compounds, environmental expo-
sures, and plant-derived substances. Based on the MetOriginDB, we
have created a unified reference system that enables researchers to

trace the potential origins of metabolites from biological samples. To
enhance annotation accuracy, we combined this source information
database with both in-house and public MS2 spectral libraries. This
integration allows TidyMass2 to provide not only metabolite annota-
tion but also origin inference analysis, addressing a critical gap in
current metabolomics analysis tools. The ability to trace the origins of
metabolites offers valuable insights for studies investigating host-
microbiome interactions, exposome, and nutritional studies. This part
will be elaborated upon in subsequent sections.

Compared toTidyMass,wehaveexpanded thepathwaydatabases
within metpath to include WikiPathways32 and Reactome36 pathways,
complementing the existing KEGG and SMPDB databases (Fig. 1a and
Supplementary Table 1). This expansion provides broader coverage of
biological processes, enabling more comprehensive pathway enrich-
ment analysis. We calculated the similarities between all pathways
from four different databases and found that combining the four
pathways together could significantly increase the number of covered
pathways (Methods and Supplementary Fig. 1a,b). Additionally, we
leveraged the massdatabase package26 to download all the reaction
pair information from eight established databases (Supplementary
Table 1).We then integrated them to build a unifiedmetabolic network

Fig. 1 | Development and enhancements in TidyMass2. a Overview of the major
improvements in TidyMass2. Key enhancements include the massdatabase pack-
age for managing metabolomics databases, expanded functionality in masstools
for chemical identifier conversion across multiple database systems, metabolite
origin inference capabilities in metid for tracing metabolite origins, and expanded
pathway databases and metabolic feature-based functional module analysis in the
metpath package. b The TidyMassShiny application development and deployment.

The left panel illustrates how TidyMass2’s new packages and functions are inte-
grated with Shiny to create the web-based interface. The central panel shows the
TidyMassShiny user interface for complete data processing and analysis. The right
panels demonstrate available deployment options, including the Docker version
and R package version that can be implemented on cloud servers, local servers, or
personal computers. Created in BioRender. Wang, C. (2026) https://BioRender.
com/78n6fgj.
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(Methods and Fig. 1a). This metabolic network facilitates more ana-
lyses, including dysregulated metabolic module identification and
targeted enzyme identification. The construction of this metabolic
network underpins the metabolic feature-based functional module
analysis in TidyMass2, enabling more comprehensive biological
interpretation even when MS2 spectra-based metabolite annotation is
limited. This part will be elaborated upon in subsequent sections.

Collectively, these enhancements make TidyMass2 a more pow-
erful, accessible, and comprehensive tool for LC-MS untargeted
metabolomics research. The improvements address key limitations in
metabolite origin inference and comprehensive biological interpreta-
tion while maintaining the commitment to reproducibility, trace-
ability, and transparency that characterized the original TidyMass
framework. Furthermore, in contrast to existing tools utilized for LC-
MS untargeted metabolomics17,23,24,37,38, TidyMass2 presents several
unique advantages, including the provision of customizedmetabolite/
pathway databases, integrated metabolite origin inference, and
metabolic feature-based functional analysis (Supplementary Table 2
and Methods).

Comprehensive Metabolite Origin Inference
Metabolite origin inference addresses fundamental challenges in
metabolomics research, particularly for investigating host-
microbiome interactions, environmental exposure research, and
nutritional interventions39–41. Accurately determining whether a
metabolite originates from human metabolism, gut microbiota, diet,
or environmental exposure provides critical context for biomarker
discovery andmechanistic interpretation. For example, differentiating
microbial metabolites from host metabolites can reveal specific
microbiome functions that could affect host physiology, while identi-
fying environmental contaminants can help assess exposure risks17.
While several databases containing metabolite source information
exist, they exhibit significant limitations in coverage, MS2 spectral data

integration, compatibility with end-to-end metabolomics workflows,
and none of them are open-source16,17.

To address these limitations,we have developed a comprehensive
metabolite origin inference approach integratedwithinTidyMass2.We
systematically downloaded data from 11 major metabolite databases
containing direct or indirect source information, including HMDB28,
KEGG29, DrugBank31, ChEBI42, FooDB (www.foodb.ca), BiGG models43,
MiMeDB44, Reactome36, T3DB45, LOTUS46, and ModelSEED47 (Fig. 2a,
Supplementary Table 1). Each database contributes uniquemetabolite
classes and information on metabolite sources. For example, HMDB
predominantly covers lots of endogenous human metabolites, KEGG
provides pathway context across organisms, DrugBank offers phar-
maceutical compound data, and specialized resources like MiMeDB44

focus specifically on microbial metabolites (Methods).
We categorized all metabolite source information into seven

distinct classes: human, animal, bacteria, drug, food, plant, and
environment (Fig. 2a). Moreover, we also documented the precise
source information for each metabolite when feasible (Methods). For
instance, when a metabolite is identified as being of human origin, we
will also note the specific derived source (such as blood, urine, pla-
centa, etc.) when possible. This classification system enables
researchers to precisely track metabolite origins, which is particularly
important for distinguishing endogenous compounds from those
derived from diet, microbiota, or environmental exposures. After
thorough data integration and elimination of redundancies, the final
metabolite database contains source information for 532,488 unique
metabolites (MetOriginDB), making it the most extensive metabolite
database with source information to our knowledge (Supplementary
Fig. 2a–j)17.

To enhance practical utility for untargeted metabolomics
research, we matched the expanded MetOriginDB to in-house and
public MS2 spectral databases25 (Fig. 2b). This integration creates a
seamless connection between metabolite annotation and metabolite
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origin inference, enabling researchers to perform end-to-end analysis
within the TidyMass2 framework. The final MS2 spectral database with
source information contains 81,461 metabolites with MS2 spectra,
including approximately 20,156 human metabolites, 15,864 bacterial
metabolites, and substantial coverage of other source categories
(MetOriginDB_ms2) (Supplementary Fig. 3a, b).

InMetOriginDB, plant sources contribute the largest numberwith
196,718 metabolites, followed by human (157,215 metabolites), food
(71,192 metabolites), and bacteria (56,949 metabolites) (Fig. 2c). This
distribution demonstrates the diverse origins of metabolites48–50. We
then explored the overlap betweenmetabolites fromdifferent sources
(Fig. 2c). A substantial overlap of 9908 metabolites was observed
between plant and food sources, which was the most significant
overlap across all source categories. This is unsurprising given the
many varieties of plant-based food51,52.

We identified 4094 metabolites classified as both human and
bacterial in origin (Fig. 2c). This finding quantitatively confirms
extensive convergent metabolism between host and microbiome
through metabolites53,54, highlighting the challenge of distinguishing
truly endogenous human metabolites from those produced or mod-
ified by gut bacteria55. Many bile acids, short-chain fatty acids, and
amino acid derivatives exist at this host-microbiome interface,
underscoring the concept of “co-metabolism,”wheremetabolites may
be produced through multi-organism metabolic pathways8.

Additionally, 1183 metabolites were found to overlap between
human and environmental sources, indicating that environmental
exposures may influence the composition and levels of human meta-
bolites. For instance, our database categorizes metabolites/com-
pounds such as urea and acetone as originating from both human and
environmental sources. These are typicalmetabolites produced by the
human body, but are also commonly found in the environment56.

Through seamless integration with the existing TidyMass2 fra-
mework, this comprehensive metabolite origin inference approach
maintains the reproducibility, traceability, and transparency that
characterized the original platform while substantially extending its
analytical power formetabolite origin inference. TheMetOriginDB and
metabolite origin inference approach in TidyMass2 provides
researchers with a powerful tool to contextualize metabolomic find-
ingswithin the complex interplayof host biology,microbiomeactivity,
diet, and environment.

Metabolic feature-based functional module analysis
Metabolite annotation is still a major bottleneck in LC-MS untargeted
metabolomics, with only ~10–20% of detected features typically
annotated via MS2 spectral matching57. However, the vast majority of
unannotated metabolic features (~80%-90%) still contain valuable
biological information and potential biomarkers58. This limitation
substantially hinders thebiological interpretationof LC-MSuntargeted
metabolomics data and restricts our ability to understand underlying
mechanisms59.

While accurate mass-based annotation (m/z or MS1) theoretically
enables the annotation ofmostmetabolic features, it suffers fromhigh
false-positive rates, as a single mass can match numerous potential
metabolites60. To address this fundamental challenge, we developed a
metabolic feature-based functional module analysis approach in
TidyMass2. This method leverages the inherent network structure of
metabolism (metabolic network) to improve annotation confidence
and biological insight without requiring comprehensive MS2 spectral-
based metabolite annotation.

Our approach is based on the principle that metabolism func-
tions as an interconnected network where metabolites are con-
verted to one another through enzymatic reactions. In biological
systems experiencing physiological or pathological changes, spe-
cific proteins/enzymes are typically up- or down-regulated, leading
to the dysregulation of directly connected metabolites61. These

perturbations propagate through the metabolic network in a wave-
like pattern, resulting in clusters of dysregulated metabolites that
form distinct modules rather than random distributions across the
metabolic network62.

To implement this metabolic network-based approach, we con-
structed a comprehensive human metabolic network by integrating
reaction pairs from 8 public metabolic databases (Fig. 3a and Supple-
mentary Table 1). After removing the redundant reaction pairs, the
final metabolic network comprises 9630 metabolites connected by
30,196 edges, representing the largest human metabolic network
currently available to our knowledge (Methods and Fig. 3b). Analysis of
network topology revealed that most metabolites (72.53%) have con-
nectivity degrees between 1 and 10, consistent with the scale-free
properties observed in most biological networks (Fig. 3c).

Our metabolic feature-based functional module analysis follows a
multi-step process (Fig. 3d and Methods). First, all metabolic features
are matched to potential metabolites based on accurate mass (m/z)
with the metabolites database that only has the metabolites in the
metabolic network (9630metabolites). These putative annotations are
then grouped into metabolic classes based on chemical annotation
and retention time (RT) behavior. A scoring system evaluates annota-
tion confidence, and redundant annotations are filtered according to
defined rules (Methods). The remaining putative metabolites are
mapped onto the comprehensive metabolic network to extract rele-
vant sub-metabolic networks for further analysis.

To identify biologically meaningful modules within this sub-
metabolic network, we apply community detection algorithms that
partition the network into functionally relatedmetabolicmodules. The
statistical significance of each identified module is assessed to distin-
guish truebiological annotations fromrandomassociations.Metabolic
modules showing significant dysregulation are combined to form a
dysregulated metabolic network representing the system-level meta-
bolic response. Finally, pathway enrichment analysis is performed for
each metabolic module to provide functional context and biological
interpretation.

This approach offers several key advantages over traditional MS2

spectra-basedmetabolite annotation approaches. Leveraging network
topology increases confidence inMS1-basedmetabolite annotations by
prioritizing those that form coherent biological modules. It enables
biological interpretation even when most individual metabolic fea-
tures lack MS2 spectral-based annotations. Additionally, it provides a
comprehensive and systems-level view of metabolic dysregulation,
capturing the coordinated nature ofmetabolic responses to biological
perturbations. This approach is particularly valuable for mechanistic
investigations where complete MS2 spectra-based metabolite annota-
tion remains challenging.

The diversity of sources of urine metabolites during human
pregnancy
Pregnancy is accompanied by extensive physiological and metabolic
adaptations, many of which can be non-invasively monitored through
urine metabolomics63–65. Beyond endogenous metabolic changes,
emerging evidence suggests thatmetabolites produced by the vaginal
microbiome can influence pregnancy outcomes66–68, and that envir-
onmental exposures may enter the maternal system and modulate
gestational processes69.

We selected pregnancy as a case study for TidyMass2 based on
several compelling considerations. First, pregnancy is a highly
dynamic physiological state characterized by extensive metabolic
remodeling across multiple organ systems. Second, the intricate
interplay betweenmaternal metabolism, the developing fetus, and the
maternal microbiome makes metabolite origin inference especially
pertinent. Third, urine provides a non-invasive and information-rich
biospecimen,making it an idealmatrix for demonstrating the power of
our TidyMass2 framework.
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To elucidate the origins of urinary metabolites during pregnancy,
we analyzed a longitudinal urine metabolomics dataset using the
TidyMass2 framework70. This dataset consisted of weekly urine sam-
ples collected from a pregnancy cohort across gestation70. A total of
875metaboliteswere identified throughMS2 spectral annotation. After
excluding those lacking standard identifiers (HMDB, KEGG, or CAS
IDs), 662 metabolites retained source classification information and
were subjected to further analysis (Fig. 4a and Methods).

We first assessed the distribution of these metabolites across the
seven origin categories defined in our database. Among the 662
metabolites, 335 were classified as human-derived (Fig. 4b). Further
resolution of these human-derived metabolites revealed their specific
biological sources, with the majority originating from blood, followed
by urine, feces, and placenta (Fig. 4c). This pattern aligns with known
physiological processes, as metabolites from these compartments are
frequently excreted in urine. A notable overlap was observed between
metabolites annotated as blood- and urine-sourced: 123 out of 199
blood-sourced metabolites (61.8%) were also detected in urine
(Fig. 4d). This overlap reinforces the value of urine as a surrogate
matrix for assessing systemic metabolic alterations during pregnancy.

Next, we focused on three metabolite source categories that are
highly relevant to maternal and fetal health: human, environmental,
and bacterial. Although substantial overlaps were observed among
these categories, a considerable number of metabolites remained
unique to each source (Fig. 4e). This finding underscores the com-
plexity of the maternal metabolic landscape and highlights how urine
metabolomics captures a composite of endogenous processes,
microbial metabolism, and environmental exposures.

Among the environment-sourced metabolites detected in mater-
nal urine, two compounds, Imidacloprid and Propamocarb, showed
significantly elevated levels in the third trimester compared to the
second (Fig. 4f). These two detected environmental contaminants
likely entered the maternal system through dietary exposure, as both
are commonly used in conventional agriculture71,72. Imidacloprid is a
neonicotinoid insecticide widely applied to fruits, vegetables, and
grains73,74, while Propamocarb is a fungicide frequently used on pota-
toes, lettuce, and tomatoes75,76. Some studies have shown that they can
be detected in human blood and urine samples77–79. Their increasing
concentrations during late pregnancy might reflect either accumula-
tion in maternal tissues, changes in maternal detoxification capacity,
or seasonal variations in dietary exposure patterns. These two com-
pounds were further confirmed using standard compounds (Supple-
mentary Fig. 4a) by MS2 spectra, which are Level 2 annotations
according to MSI80. These findings demonstrate how TidyMass2 can
identify potential environmental exposures requiring further investi-
gation, particularly in vulnerable populations like pregnant women.

In addition, TidyMass2 facilitated the detection of microbiome-
derived metabolites that increased during late pregnancy. Two such
metabolites, N-Acetylmannosamine and Phloroglucinol, were sig-
nificantly upregulated in the third trimester compared to the second
(Fig. 4g). Thesemetabolites are knownmicrobial productswithdiverse
physiological roles, including modulation of immune tolerance and
oxidative balance81–83. Their dynamic changesmay reflectmicrobiome-
driven metabolic adaptations critical to maintaining pregnancy.
Importantly, these metabolites may not have been prioritized using
traditional annotation pipelines, highlighting the strength of our
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origin-informed framework.We then confirmed these two compounds
using standard compounds (Supplementary Fig. 4a) by MS2 spectra,
which are Level 2 annotations according to MSI80.

In summary, these results highlight the diverse and multi-origin
composition of the pregnancy urine metabolome. By integrating

comprehensive metabolite origin inference with LC-MS untargeted
metabolomics, TidyMass2 enables the discovery of biologically rele-
vant endogenous, microbial, and environmental metabolites. This
capacity expands the interpretability of urine metabolomics in preg-
nancy and offers new avenues for understandingmaternal-fetal health,
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environmental exposures, and host-microbiome interactions during
gestation.

Dysregulated metabolic modules during human pregnancy
During pregnancy, substantial metabolic remodeling occurs, provid-
ing potential biomarkers for pregnancy-related conditions such as
preterm birth, gestational diabetes mellitus (GDM), and
preeclampsia84–86. These metabolic changes also provide insights into
the underlying mechanisms of pregnancy and its associated
complications87. In the longitudinal human pregnancy study, we
applied comprehensive urine metabolomics analysis to characterize
these changes. Using significance analysis of microarrays (SAM) and
correlation analysis, we identified 936 metabolic features that sig-
nificantly increased and 108 that significantly decreased across preg-
nancy (Fig. 5a). To validate the pregnancy-specific nature of these
changes, we calculated a recovery score that measures howmetabolic
features change after delivery compared to late pregnancy (GA range:
28-42 weeks, Methods). Remarkably, 98.82% (925 out of 936) of
increased metabolic features exhibited recovery scores less than 1,
indicating a significant decrease after delivery. Correspondingly, all
decreased metabolic features during pregnancy showed recovery
scores greater than 1, confirming a return to higher levels postpartum
(Fig. 5a and Supplementary Fig. 5a). This consistent pattern of reversal
strongly suggests that the identified metabolic features represent
genuine pregnancy-associated changes, providing a robust foundation
for comprehensive metabolic insights.

Despite the large number of significant metabolic features iden-
tified, traditional MS2 spectra-based metabolite annotation approa-
ches yielded limited results; only 4.7% (42 out of 936) of increased
metabolic features and 6.9% (7 out of 108) of decreased metabolic
features were successfully annotated using the public MS2 spectra
database (Fig. 5b). Pathway enrichment analysis using these annotated
metabolites and referencing KEGG and SMPDB databases revealed
steroid hormone biosynthesis (KEGG) and steroidogenesis (SMPDB) as
significantly enriched pathways, consistent with previous studies88,89.
These two pathways refer to the same pathway as defined in both
databases (Supplementary Fig. 5b). However, the low annotation rate
severely restricted our ability to comprehensively understand meta-
bolic changes during pregnancy.

To decode the comprehensive metabolic change during preg-
nancy, we applied the metabolic feature-based functional module
analysis approach in TidyMass2, which significantly expands biolo-
gical interpretation beyond MS2 spectra-based annotated metabo-
lites. Finally, this approach identified 27 dysregulated metabolic
modules (Supplementary Table 3), creating a dysregulated meta-
bolic network that incorporated a substantially higher percentage of
the significantly changing features compared to traditional methods
(Fig. 5d). This network-based approach enabled the utilization of
more than 58.8% (614 out of 1044) of significantly changed features
for biological insight mining (Supplementary Fig. 5c), representing a
marked improvement over traditional annotation-dependent
methods, which only utilized 5.8% of significant metabolic features
(Fig. 5b). Additionally, we validated several features annotated by
FFMA using in-house standard library and found that these features
were either correctly annotated or exhibited high biological simi-
larity to the standard annotations (Methods and Supplementary
Fig. 6a–f).

Then we performed pathway enrichment analysis using all meta-
bolites in the dysregulated metabolic network; 29 pathways were
enriched (Fig. 5e, Supplementary Table 4), a significant expansion
compared to the limited pathways identified through traditional
methods (29 vs. 1 pathways) (Fig. 5c). The enriched pathways encom-
passed broader aspects of metabolism, including lipid metabolism,
amino acid processing, and energy production pathways relevant to
pregnancy.

We then carried out quantitative analysis of the dysregulated
modules throughout pregnancy, which revealed that most metabolic
modules increased during pregnancy (Fig. 5f), consistent with the
pattern observed in individual metabolic features (Fig. 5a). As expec-
ted, most of these metabolic modules showed increasing temporal
patterns, with someexhibiting early changes in the first trimesterwhile
others progressively increased across gestation (Supplementary
Fig. 7a). Module correlation analysis further revealed interconnected
positive correlation relationships between them (Supplementary
Fig. 7b), suggesting coordinatedmetabolic reprogramming to support
fetal development and maternal adaptation.

To gain deeper biological insights from our metabolic network-
based analysis, we further characterized several key dysregulated
metabolic modules with distinct functional significance (Fig. 6). The
feature-based module analysis enabled us to link unidentified meta-
bolic features with metabolic pathways (Methods), substantially
expanding our ability to extract biological insights from the dataset.

Themetabolic module 17 comprised 57metabolic features and 14
metabolites, which is primarily associated with steroid hormone-
related pathways, including steroid hormone biosynthesis
(p-value <0.001) and ovarian steroidogenesis (p-value < 0.001)
(Fig. 6a). The module contained multiple androgen derivatives and
glucuronides, highlighting the capacity of our approach to capture
established pregnancy-associated endocrine changes90,91. The enrich-
ment of steroid-related pathways is consistent with previous studies
on maternal metabolic adaptations during pregnancy92,93.

Metabolic module 6 consisted of 16 metabolic features and 25
metabolites focused primarily on carbohydrate metabolism (Fig. 6b).
This module revealed significant enrichment in fructose and mannose
metabolism (p-value <0.001), galactose metabolism (p-value < 0.001),
and starch and sucrose metabolism pathways (p-value < 0.001). Inter-
estingly, this module also showed connections to disease-relevant
pathways, including diabetic cardiomyopathy (p-value <0.001) and
insulin resistance (p-value <0.001), potentially reflecting the meta-
bolic stress associated with pregnancy and the increased risk for
gestational diabetes mellitus94,95.

One of the most extensive dysregulated networks, metabolic
module 2, contained 133 metabolic features and 84 metabolites
(Fig. 6c). This module was predominantly associated with amino acid
metabolism, showing significant enrichment in alanine, aspartate, and
glutamate metabolism (p-value < 0.001), arginine biosynthesis
(p-value <0.001), and cysteine and methionine metabolism
(p-value <0.05). Additionally, this module is linked to important cel-
lular processes, including ABC transporters (p-value <0.001), mineral
absorption (p-value < 0.001), and mTOR signaling (p-value <0.005),
which reflect the increased protein synthesis and nutrient transport
demands during pregnancy.

In metabolic module 4, we identified a dysregulated metabolic
network containing 208 metabolic features and 208 metabolites
(Fig. 6d). This module was significantly associated with caffeine
metabolism (p-value <0.001), a finding that aligns with and confirms
observations from parallel plasma sample analyses, providing cross-
validation between different biofluids93.

Together, these results demonstrate that the metabolic feature-
based functional module analysis approach implemented in Tidy-
Mass2 successfully identified both well-established pregnancy-asso-
ciated metabolic changes and novel biological insights. The approach
validated findings across different biological matrices (urine and
plasma) while uncovering previously uncharacterized metabolic
adaptations during pregnancy. By integrating unannotated metabolic
features into biologically meaningful modules, our method sub-
stantially expanded the interpretative scope beyond traditional MS2

spectra-based metabolite annotation analyses, enabling more com-
prehensive metabolic phenotyping during pregnancy. Additionally, to
further demonstrate TidyMass2’s ability to robustly handle diverse raw
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MSdatasets and uncover novel biological insights, we applied it to two
additional public metabolomics datasets93,96 (Supplementary
Figs 8a–e, 9a–g and Supplementary Note).

Discussion
In this study, we present TidyMass2, a comprehensive computational
framework that addresses critical challenges in LC-MS untargeted
metabolomics data analysis. The three major innovations imple-
mented in TidyMass2: metabolite origin inference, metabolic feature-
based functional module analysis, and an intuitive web interface, sig-
nificantly advance our ability to derive meaningful biological insights
from complex untargeted metabolomic datasets, particularly in con-
texts where conventional annotation-dependent approaches provide
limited information.

The metabolite origin inference system represents a major step
forward in understanding the complex interplay between endogenous
metabolism, the microbiome, diet, pharmaceuticals, and environ-
mental exposures. By integrating source information from 11 distinct
databases, we created theMetOriginDB and a unified reference system
that enables researchers to trace the origins of detected metabolites.
Several tools have been developed for metabolite origin inference,
such asMicrobeMASST16. WhileMicrobeMASST focuses exclusively on
microbiota-derivedmetabolites and is limited to the subset of features
with available MS2 spectra, MetOriginDB enables origin inference for
all detected features with annotations obtained by any method. In

addition,MetOriginDBencompasses sevendistinctmetabolite sources
beyond those only derived from the microbiota, providing a broader
and more comprehensive framework for origin attribution. The sub-
stantial overlap we observed between human and bacterial metabo-
lites provides quantitative confirmation of the extensive metabolic
integration between host and microbiome. This finding underscores
the concept of “co-metabolism,”wheremetabolic products arise from
multi-organismmetabolic pathways. The ability todistinguishbetween
endogenous and exogenousmetabolites provides a critical context for
interpreting results, particularly in studies investigating host-
microbiome interactions, exposome research, and nutritional
interventions.

Another important advancement in TidyMass2 is the metabolic
feature-based functional module analysis approach. Traditional
metabolomics studies face a fundamental limitation in that typically,
only ~10%-20% of detected metabolic features can be annotated using
MS2 spectralmatching, leaving the vastmajority of potentially valuable
biological information inaccessible14. Our approach leverages the
inherent network structure of metabolism to extract biological
meaning from unannotated features, dramatically expanding the
interpretative scope of metabolomics data. The pregnancy case study
demonstrates the power of this approach, where we increased the
proportion of biologically interpretable features from 5.8% to 58.8%
and expanded the number of enriched pathways from just 1 to 29. This
substantial improvement enables more comprehensive metabolic
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Fig. 6 | Functional characterization of key dysregulated metabolic modules
identified in maternal urine during pregnancy. a Metabolic module 17 is asso-
ciated with steroid hormone pathways. b Metabolic module 6 representing car-
bohydrate metabolism. c Metabolic module 2 is associated with amino acid
metabolism. d The metabolic module 4 represents caffeine metabolism. Left:
Network visualization showing metabolic features (yellow triangles) and detected
metabolites (red circles). Node size indicates the degree of connectivity. Right:

Pathway enrichment analysis of the metabolites in the dysregulated metabolic
modules. Pathway enrichment analysis was performed using a one-sided hyper-
geometric test, and p-values were adjusted for multiple comparisons using the
Benjamini-Hochberg (BH) method. Metabolic module significance was assessed
using a one-sided permutation-based test with a Gamma-fitted null distribution; no
additional multiple-comparison correction was applied at the module level.
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phenotyping and mechanistic understanding. We also demonstrated
that the feature annotations generated by this approach can be vali-
dated using standard compounds (Supplementary Fig. 6a–f, MSI Level
2), indicating that it can produce either correct annotations or biolo-
gically related annotations for dysregulated features.

The comprehensive human metabolic network we constructed,
comprising 9630 metabolites connected by 30,196 edges, represents
the largest human metabolic network currently available to our
knowledge97,98. This resource not only underpins the metabolic
feature-based functional module analysis in TidyMass2 but also serves
as a valuable reference for the broadermetabolomics community. The
network’s scale-free properties, with most metabolites having con-
nectivity degrees between 1 and 10, align with established character-
istics of biological networks and provide confidence in its biological
relevance99,100.

The entirely open-source nature of TidyMass2, with all code and
databases freely available, promotes reproducibility and transparency
in untargeted metabolomic data analysis. The addition of an intuitive
Shiny interface significantly lowers the technical barriers to utilizing
advanced metabolomics analysis tools, making sophisticated compu-
tational approaches accessible to researchers without extensive pro-
gramming expertise. This commitment to accessibility aligns with
broader movements toward open science and democratization of
advanced analytical methods.

Compared to existing metabolomics analysis tools17,23,24,37,38,
TidyMass2 offers several distinctive advantages (Supplementary
Table 2). While these platforms provide robust solutions for specific
aspects of metabolomics analysis, TidyMass2 uniquely integrates
metabolite origin inference with feature-based functional module
analysis in a comprehensive framework. For example, MetaboAnalyst
offers statistical and pathway analysis, but lacks capabilities for
metabolite origin inference, as well as customized databases and
pathway databases for metabolite annotation and pathway enrich-
ment. MS-DIAL focuses on raw data processing and metabolite anno-
tation, but does not leverage the metabolic feature-based functional
module. The distinctive strength of the TidyMass2 framework lies in its
seamless integration of comprehensive metabolite origin inference
with metabolic feature-based functional module analysis within a sin-
gle, reproducible workflow. Unlike platforms that address only iso-
lated aspects of metabolomics (Supplementary Table 2), TidyMass2
provides an end-to-end solution that preserves data integrity while
offering both command-line flexibility and an intuitive graphical
interface.

The application of TidyMass2 to urine metabolomics data from
human pregnancy revealed extensive metabolic remodeling with high
pregnancy specificity, as evidenced by the consistent reversal patterns
observed in recovery scores. First, we identified four compounds ori-
ginating from the microbiome and the environment, demonstrating
the method’s capability for inferring metabolite origins. However,
since these compounds were initially annotated using public MS2

spectra and later confirmed with standards based on m/z and MS2

matching, they should be classified asMSI Level 2 annotations. Second,
the identification of 27 dysregulated metabolic modules using FFMA
provides a systems-level view of pregnancy-associated metabolic
changes, capturingwell-establishedpathways suchas steroid hormone
biosynthesiswhile uncovering previously uncharacterized adaptations
in carbohydrate and amino acid metabolism. The cross-validation of
findings between urine and plasma samples, as demonstrated with
caffeine metabolism, further supports the robustness of our
approach101. The identification of caffeinemetabolismas a significantly
dysregulated pathway during pregnancy is particularly interesting
given known alterations in caffeine pharmacokinetics during
gestation93. Pregnancy extends the half-life of caffeine from approxi-
mately 3 hours in non-pregnant women to 10-16 hours by late preg-
nancy, primarily due to decreased CYP1A2 activity102. These metabolic

changesmay explain our observations and highlight the importanceof
caffeine monitoring during pregnancy, given its potential associations
with fetal growth and development outcomes103.

Beyond its application to pregnancymetabolomics demonstrated
in this study, TidyMass2 is designed to benefit diverse research
domains, including host-microbiome interactions, environmental
exposomics, pharmacometabolomics, and nutritional metabolomics.
The ability to trace metabolite origins and extract biological meaning
from unannotated features makes TidyMass2 particularly valuable for
complex, multi-factorial studies where conventional annotation-
dependent approaches provide limited insights.

Despite these advances, several limitations and opportunities for
future development remain. First, while our metabolite origin data-
base represents a substantial improvement over existing resources,
the classification system remains relatively broad. Currently,
microbiota-derived metabolites are annotated with highly detailed
origin categories, and future refinements could extend this level of
granularity to metabolites from other sources. For example, for
human-derived metabolites, their origin (such as blood, urine, or tis-
sue) can be specified to provide a more precise source of the meta-
bolites. In addition, all source information is derived from knowledge-
based databases. In the future, this could be enhanced by incorpor-
ating additional origin information from public metabolomics repo-
sitories, applying a similar concept to that used by MicrobeMASST16.
Second, themetabolic feature-based functional module analysis, while
powerful, still relies on putative mass-based annotations as a starting
point. Integration with emerging computational methods for predict-
ing MS2 spectra could further improve annotation confidence and
expand coverage. Although we applied computational approaches to
reduce annotation redundancy, the resulting annotations from this
method still fall under MSI level 3. This is consistent with other widely
used approaches, such as MetDNA14, Mummichog23, and PIUMet24.
Therefore, for the most important pathways identified using this
method, further experiential validation is needed. Third, the current
implementation primarily focuses on human metabolism, and
extending it to other model organisms would broaden its applicability
across diverse research domains. Addressing these limitations repre-
sents our roadmap for future development of the TidyMass
ecosystem.

In conclusion, TidyMass2 represents a significant advancement in
computationalmetabolomics, addressing key limitations inmetabolite
origin determination and biological interpretation based on limited
MS2 spectra-based annotated metabolic features. The framework’s
ability to extract meaningful biological insights from incompletely
annotated datasets substantially expands the utility of untargeted
metabolomics across diverse biomedical applications. As multi-omics
approaches continue to transform biomedical research, TidyMass2
provides a powerful tool for integrating metabolomic data into com-
prehensive biological understanding, ultimately contributing to
improved mechanistic insights, biomarker discovery, and therapeutic
development.

As a long-term project, our roadmap for TidyMass development
focuses on addressing current limitations and expanding capabilities.
Near-term objectives include: (1) implementing more granular origin
classification with species-level resolution for microbiome-derived
metabolites; (2) integrating emerging computational MS2 spectra
prediction methods to improve annotation confidence; (3) expanding
support for non-human organisms by incorporating additional model
organism metabolic networks; and (4) developing enhanced cap-
abilities for multi-omics data integration, such as microbiome and
metabolome, and exposome and metabolome. Additionally, commu-
nity contributions are encouraged through our GitHub repository,
where feature requests and bug reports can be submitted. Regular
updates will be provided through the TidyMass website (https://www.
tidymass.org).
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Methods
TidyMassShiny development
TidyMassShiny was developed as an integral component of TidyMass2
to provide a user-friendly graphical interface, making advanced
metabolomics data analysis accessible to researchers regardless of
their computational background. The application was built using R’s
Shiny framework, which enables interactive web applications directly
fromRcode, allowing us to create a seamless bridge betweenpowerful
analytical capabilities and an intuitive user experience.

The design philosophy of TidyMassShiny centers on modularity,
reproducibility, and interoperability. We implemented a comprehen-
sive data processing pipeline that guides users through the entire
metabolomics workflow, from raw data processing and quality control
to advanced analyses, including metabolite annotation, origin tracing,
and pathway enrichment. Each module corresponds to a key step in
the TidyMass2 framework, preserving the analytical rigor while
abstracting away programming complexity.

A distinctive feature of TidyMassShiny is its seamless integration
with the “mass_dataset” object structure fundamental to TidyMass2.
Users can upload mass_dataset objects at any stage of the workflow,
allowing entry at any point in the analysis pipeline. This flexibility
enables researchers to perform certain steps using alternative tools
and then continue their analysis within TidyMassShiny without data
format conflicts. Similarly, at each analytical stage, the “mass_dataset”
object is automatically saved. This feature facilitates the reproduci-
bility of analysis steps, integration with external tools, and support for
collaborative workflows across research teams utilizing diverse soft-
ware preferences.

The interface design prioritizes scientific visualization, providing
interactive plots for data exploration, quality assessment, and result
interpretation. We implemented customizable visualization options
for multiple data types, including peak intensity distributions, princi-
pal component analyses, metabolic networks, and pathway enrich-
ment results. These visualizations are generated dynamically, allowing
researchers to adjust parameters and immediately observe the effects
on their data.

While TidyMassShiny offers substantial analytical power, its
extensive dependency framework, which requires numerous R
packages for specialized statistical, chemometric, and visualization
functions, creates significant installation challenges, particularly for
researchers without computational expertise. To address this barrier,
we developed a containerized Docker version of TidyMassShiny that
encapsulates the entire application with all dependencies in a pre-
configured environment.

The Docker implementation provides several advantages: (1) it
eliminates dependency conflicts and version compatibility issues that
frequently arise during manual installation; (2) it ensures consistent
performance across operating systems, including Windows, macOS,
and Linux distributions; and (3) it requires minimal setup knowledge,
as users need only install Docker and execute a simple command to
retrieve and run the TidyMassShiny image.

We optimized the Docker image for both performance and
accessibility, carefully balancing resource utilization with processing
speed. The container includes pre-installed versions of all required R
packages, optimized computational libraries, and a complete runtime
environment configured specifically for metabolomics analysis. This
approach maintains analytical performance while significantly redu-
cing the technical barriers to adoption.

For server deployments, we included configuration options that
enable institutions todeployTidyMassShinyon their internal networks,
supporting multiple concurrent users while maintaining data security
and privacy. TheDocker image is regularly updated to incorporate bug
fixes, feature enhancements, and security updates, with versioning
that ensures reproducibility of analyses across time.

This containerized approach has substantially expanded Tidy-
Mass2’s accessibility, enabling researchers from diverse backgrounds,
including those with limited programming experience, to leverage
advanced metabolomics analysis methods previously restricted to
those with specialized computational training.

Computational performance was a key priority in the develop-
ment of TidyMassShiny. The application was optimized to efficiently
process large-scale metabolomics datasets while maintaining
responsive performance on standard hardware. To address the
challenges of scalability, TidyMassShiny is completely open-source
and supports local server deployment, as described above, enabling
users to leverage their own computational resources. This approach
offers a sustainable solution, as providing centralized cloud com-
puting power for all users would be impractical and unsustainable in
the long term.

To ensure reliability and reproducibility, TidyMass2 was rigor-
ously tested across multiple platforms and datasets. Core functions
were validated using unit tests implemented with the testthat frame-
work. All TidyMass2 packages are activelymaintained by our team and
the broader user and developer community via GitHub, enabling
continuous updates, issue tracking, and collaborative improvements.

Additionally, we’ve deployed TidyMassShiny on a cloud server,
making it easily accessible and user-friendly. You can access it here:
https://tidymassshiny.jaspershenlab.com. The server is hosted on Ali-
baba Cloud, equipped with 32 CPU cores, 64 GB of RAM, 150 GB of
cache space, and 1 TB of storage, ensuring smooth and efficient
performance.

Metabolite database with source information for metabolite
origin inference
TidyMass2 integrates 11 diverse metabolite databases with source
information to create a comprehensive metabolite reference system.
These databases include KEGG29, HMDB28, BiGGmodels43, DrugBank31,
ChEBI42, FooDB (www.foodb.ca), LOTUS46, MiMeDB44, ModelSEED47,
Reactome36, and T3DB45 (Fig. 2a). These 11 databases were selected
based on their complementary coverage of different metabolite
sources, established reputation in the field, and availability of struc-
tured data for integration. Each database contributes unique
strengths. For instance, HMDB provides comprehensive coverage of
human metabolites with detailed biofluid information, KEGG offers
pathway context across diverse organisms, MiMeDB specializes in
microbial metabolites with species-level resolution, and T3DB focuses
specifically on environmental toxins and contaminants.

We systematically categorized all metabolites into seven source
classes: human, animal, bacteria, drug, food, plant, and environment
(Fig. 2a). Each metabolite in the database is systematically classified
using a standardized annotation schema. If a metabolite is of human
origin, its “from_human” column is designated as “Yes”; if evidence
indicates it is not from human sources, this column is marked as “No”;
and in cases where origin information is unavailable or inconclusive,
the value is recorded as “Unknown.” This consistent three-tier classi-
fication system (Yes/No/Unknown) is applied across all seven source
categories, enabling precise filtering and comprehensive inference of
metabolite origins. For each source category, we implemented
detailed specificity annotations where available. For instance, human-
derived metabolites are further characterized by their biological ori-
gin. For example, if a metabolite is found in human blood, it receives a
“blood” designation in the “from_which_part” column. Similarly, bac-
terial metabolites are annotated with their specific microbial source,
such as a metabolite produced by Escherichia coli being marked as
“e.coli” in the “from_which_bacteria” column. This granular classifica-
tion system preserves valuable provenance information, enabling a
more nuanced interpretation of metabolite origins in complex biolo-
gical samples.
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KEGG. The Kyoto Encyclopedia of Genes and Genomes (KEGG)
contains metabolic pathway information spanning thousands of
species104. Using the massdatabase package, we downloaded and
analyzed all availablemetabolic pathways, extracting and classifying
metabolites according to their taxonomic origins. Metabolites pre-
sent in human pathways were labeled as human-derived, while those
in bacterial pathways received bacterial classification. Additionally,
we incorporated the KEGG DRUG database, labeling all entries as
drug-sourced compounds. The final KEGG integration yielded
approximately 28,804metabolites and 11,873 drug compounds with
source annotations.

HMDB. TheHumanMetabolomeDatabase (HMDB)provides extensive
information on metabolites detected in various human biological
samples28. We processed all 217,920 HMDB metabolites, assigning
human source classification by default. Where origin filter options
such as “Food”, “Plant”, and “Microbial” were provided on the HMDB
website, we adopted the labels for the corresponding metabolites and
replaced the original human source. HMDB’s biofluid and cellular
localization data provided additional context regarding the distribu-
tion of metabolites within human systems.

BiGGmodels. The Biochemical Genetic and Genomic knowledgebase
(BiGG) contains metabolic models across diverse species. We sys-
tematically downloaded information for each organism, extracted
associated metabolites, and assigned source classifications based on
taxonomic information. This approach enabled multi-source labeling;
metabolites present in both bacterial and plant models, for example,
received both source designations. BiGG’s curated genome-scale
metabolic reconstructions provided reliable species associations for
metabolites. The final database contains 7,027 metabolites.

DrugBank. This comprehensive pharmaceutical database contains
detailed molecular and pharmacological data on thousands of drug
compounds31. We integrated the complete DrugBank dataset, classi-
fying all metabolites as drug-sourced. This integration enhances
TidyMass2’s ability to distinguish pharmaceutical compounds from
endogenous metabolites in biological samples. The final database
contains 11,300 metabolites.

ChEBI. The Chemical Entities of Biological Interest (ChEBI) database
provides a structured classification of molecular entities with biologi-
cal relevance. We leveraged ChEBI’s “Metabolite of Species” ontology
to extract taxonomic origin information for each metabolite, enabling
precise source classification across kingdoms of life. ChEBI’s ontolo-
gical structure facilitated the hierarchical classification of metabolite
origins. The final database contains 147,390 metabolites.

FooDB. The Food Database (FooDB) catalogs the chemical compo-
sition of common unprocessed foods. For each metabolite, FooDB
specifies food sources, allowing us to label all entries as food-
derived while preserving specific information about particular food
origins (e.g., specific fruits, vegetables, or animal products). This
fine-grained food source information provides valuable context for
nutritional metabolomics studies. The final database contains
70,360 metabolites.

LOTUS. The Natural Products Occurrence Database (LOTUS) specia-
lizes in natural products with detailed source information46. We clas-
sified metabolites according to their documented origins, primarily
spanning plant, fungal, and bacterial sources, enhancing coverage of
naturally occurring bioactive metabolites. LOTUS’s taxonomically
organized data structure enabled the precise attribution of metabo-
lites to specific biological sources. The final database contains 276,518
metabolites.

MiMeDB. The Microbial Metabolites Database (MiMeDB) focuses
specifically on small molecules produced by the human microbiome.
We incorporated all metabolites from this database with bacterial
source classifications, significantly enriching TidyMass2’s coverage of
gut microbiome-derived metabolites. MiMeDB’s focus on human
microbiome metabolites provides critical information for studies
investigating host-microbiome metabolic interactions. The final data-
base contains 27,641 metabolites.

ModelSEED. ModelSEED is a biochemistry database containing
metabolites associatedwith 41 plant species.We downloaded all plant-
related data, extracted themetabolites, and labeled them according to
their plant origins, including specific plant species information where
available. This addition significantly enhanced our coverage of plant
metabolites with precise taxonomic sourcing, which is particularly
valuable for studies involving dietary plant metabolites. The final
database contains 33,992 metabolites and 512 metabolites with plant
source information.

Reactome. Reactome provides metabolic pathways for different spe-
cies, including humans and various microorganisms. We downloaded
the mapping files of ChEBI to all pathways, extracted metabolites, and
integrated them into our metabolite database with corresponding
source information. Reactome’s pathway context provided additional
functional context for metabolites, complementing the source attri-
bution data. The final database contains 2,487 metabolites.

T3DB. The Toxin and Toxin Target Database (T3DB) is a specialized
bioinformatics resource that combines detailed toxin data with com-
prehensive information on toxin targets. We downloaded all 3,678
metabolites and classified them as environment-sourced metabolites.
T3DB’s focus on environmental toxins enhances TidyMass2’s ability to
identify potentially harmful exogenous metabolites in metabolomic
profiles.

Integration of the comprehensive metabolite database. All 11
metabolite databases were integrated into a unified and comprehen-
sive metabolite database with source information. During integration,
we employed a hierarchical identifier matching strategy, prioritizing
HMDB identifiers first, followed by KEGG identifiers, InChI strings,
InChIKeys, and CAS registry numbers. For source information recon-
ciliation, we implemented a knowledge-preserving approach: if a
metabolite was labeled with a specific source in one database but had
an uncertain origin in another database. We retained the specific
source classification. We employed a stepwise, pairwise integration
approach, first combining two databases and then sequentially incor-
porating additional databases to ensure maximal coverage and accu-
racy. The final database (MetOriginDB)was implemented as a database
class in themetpath package. It is entirely open-source and available in
multiple formats (rda, CSV, and TSV) from the TidyMass website:
https://www.tidymass.org/databases/. Finally, there were 827,117
metabolites in total for the 11 databases, and the comprehensive
metabolite database contains over 650,884 unique metabolites, and
532,488 of them have at least one source annotation.

To address the need for more granular origin classification, we
have implemented hierarchical taxonomic annotations within MetOr-
iginDB. For bacterial metabolites, the database includes species-level
identification for 56,949 compounds, with complete taxonomic
lineages (phylum, class, order, family, genus, and species) where
available16.

MS2 spectra databases with source information. We enhanced the
utility of our MetOriginDB by integrating source information with our
MS2 spectral databases, encompassing both in-house and public MS2

spectra databases21,28,105. This integration enables source attribution
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during metabolite annotation via spectral matching, a key innovation
that distinguishes TidyMass2 from existing tools. This MS2 spectra-
enhanced database significantly improves the specificity and accuracy
of metabolite source attribution in untargeted metabolomics studies.
Finally, 25 MS2 spectra databases were created with metabolite source
information (Supplementary Fig. 3a,b), which contains 81,461 meta-
bolites and 502,790 MS2 spectra (MetOriginDB_ms2; 342,892 for
positivemode and 159,898 for negativemode). And all theMS2 spectra
databases are open source and can be downloaded from the TidyMass
website: https://www.tidymass.org/databases/.

Metabolite origin inference
TidyMass2 offers two complementary approaches for metabolite ori-
gin inference. In the first approach, users can employ the integrated
metid package for metabolite annotation27, and then seamlessly ana-
lyze origin information by passing their annotated “mass_dataset”
object to the “analyze_metabolite_origin” function. Alternatively, for
increased flexibility, users who prefer external annotation tools can
import their independent annotation results into the “analyze_meta-
bolite_origin” function. This dual-pathway design accommodates
diverse workflows while providing consistent access to TidyMass2’s
comprehensive metabolite origin database, enabling researchers to
trace thebiological, dietary, pharmaceutical, or environmental sources
of detected metabolites regardless of their preferred annotation
methodology.

Metabolic network
The metabolic network in TidyMass2 was constructed by integrating
reaction pair information from eight public databases: ModelSeed47,
Recon3106, KEGG29, MetaNetx107, BiGG43, Rhea108, HMDB28, and
Reactome36. All reaction pair data were retrieved using the massdata-
basepackage26 and subsequentlymerged,withduplicate reactionpairs
removed across databases (Fig. 2d). The resulting consolidated net-
work comprises 9630 nodes (metabolites) and 30,196 edges (reac-
tions). This network was structured as a network file (tbl_graph class)
using the igraph and ggraph packages in R. The complete metabolic
network is available for download at https://www.tidymass.org/
databases/, while the code for downloading reaction pairs and data
processing is accessible at https://github.com/tidymass/
metabolomics_databases.

Metabolic feature-based functional module analysis
The feature-based functional module analysis implemented in Tidy-
Mass2 expands traditional pathway analysis beyond annotated meta-
bolites, addressing the annotation bottleneck in untargeted
metabolomics. MetDNA also leverages metabolic networks for meta-
bolite annotation, but it is based on a fundamentally different
concept14. Specifically, MetDNA operates on the principle that meta-
bolites forming a reaction pair often share similar MS2 spectra,
enabling annotation through spectral similarity within the metabolic
network14. In contrast, TidyMass2 does not rely on this principle.
Instead, it matches features primarily by accurate mass while inte-
grating retention time, isotope patterns, and adduct information to
cluster features into distinct metabolite classes (see below). Redun-
dancy within these classes is then minimized according to annotation
confidence. The curated annotations are subsequently mapped onto
the metabolic network, where TidyMass2 applies graph-based com-
munity detection algorithms to identify modules. This approach,
available in the metpath package and TidyMassShiny interface, pro-
vides comprehensive insights into metabolic changes. Detailed doc-
umentation is available at https://www.tidymass.org/tidymassshiny-
tutorial/.

Data preparation. Users must provide two feature tables: (1) a com-
prehensive table containing all metabolic features with variable_id

(unique identifier), m/z (mass-to-charge ratio), rt (retention time in
seconds), and polarity information (“positive” or “negative”); and (2) a
marker feature table of statistically significant features that addition-
ally includes log2(fold change) or correlation values and p-values. The
analysis also requires a metabolic network, metabolite database, and
pathway database, all available for download from the TidyMass2
website.

Metabolite annotation based on m/z. Initially, all metabolic features
arematched to potential metabolites in the database using MS1-based
annotation through the metid package. With a default mass tolerance
of 25 ppm (user-adjustable), all annotations within the threshold are
retained for subsequent analysis. The metabolite database used here
only contains metabolites that are in the metabolic network (9,640
metabolites).

Isotope annotation. For each metabolite-feature match, we calculate
theoretical isotope patterns and search for corresponding features in
the feature table. These isotope annotations are incorporated into the
annotation table, providing additional confidence for metabolite
identifications.

Metabolite class identification. Annotations are organized into
metabolite classes based on chemical identity and chromatographic
behavior. A metabolite class comprises metabolic features with iden-
tical annotations and similar retention times (within a defined toler-
ance). This approach recognizes that one metabolite may form
multiple metabolite classes due to retention time differences, while a
single feature may belong to several metabolite classes with different
annotations.

Scoring for metabolite class. Each metabolite class receives a con-
fidence score based on adduct and isotope pattern evidence. The
scoring system awards points for characteristic adducts in each ioni-
zationmode: 50 points for primary adducts ([M+H]+ in positivemode
or [M-H]- in negative mode), 20 points for isotopes of these primary
adducts, 20 points for alternative adducts, and 10 points for isotopes
of alternative adducts. The maximum possible score is 200, with
higher scores indicating greater annotation confidence.

Removing redundant annotations based on scores. To reduce false
positives, we filter annotations based on confidence scores. When a
feature belongs to multiple metabolite classes, if the highest-scoring
class exceeds 100 points, lower-scoring alternatives are removed. This
process significantly reduces annotation redundancy and eliminates
likely incorrect assignments.

Identifying hidden metabolites from the metabolic network. To
enhance pathway coverage, we incorporate “hidden metabolites” that
connect detected metabolites within the reaction network. Hidden
metabolites are defined as metabolites that are not directly detected
but are capable of connecting any two detected metabolites within
three reaction steps. These hidden metabolites increase network
integrity, which is particularly valuable when working with a limited
number of detected metabolites.

Identifying dysregulated metabolic networks and modules. Using
both detected and hidden metabolites, we extract a subnetwork from
the comprehensive metabolic network, termed the dysregulated meta-
bolic network. The community detection algorithms implemented in
TidyMass2 leverage random walks through the metabolic network to
identify densely connected subgraphs that likely represent functional
modules. Specifically,weemploy theWalktrap algorithm,whichuses the
principle that short random walks tend to stay within the same com-
munity due to higher internal edge density109. This approach has been
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validated in protein-protein interaction networks and metabolic net-
works, showing superior performance in identifying biologically mean-
ingful modules compared to alternative methods110,111.

Compared to existing network-based approaches like
Mummichog23 and PIUMet24, our metabolic feature-based functional
module analysis offers several advantages. Unlike Mummichog, which
cannot integrate data from positive and negative ionization modes,
TidyMass2 processes data from both modes simultaneously, increas-
ing metabolite coverage. Our approach also incorporates retention
time information, which substantially reduces annotation redundancy
compared to PIUMet’sm/z-only approach. Additionally, by employing
a comprehensive scoring system for metabolite class identification,
TidyMass2 providesmoregranular confidence assessment for putative
annotations.

Functional annotation for dysregulated metabolic modules. Sig-
nificantly dysregulated modules (p-value < 0.05) were subjected to
pathway enrichment analysis using an integrated pathway database
that contains KEGG, WikiPathways, and Reactome pathways. This
analysis revealed biological functions associated with each metabolic
module, connecting network-level observations to established biolo-
gical pathways.

Data visualization of results. The dysregulated metabolic modules
and networks are visualized through customized network plots that
highlight connections between detected metabolites and hidden
metabolites and their organization into functionalmodules. Additional
visualizations of enriched pathways provide a biological context for
interpreting the network structures in relation to pregnancy
progression.

Validation of features annotated by FFMA
To validate the features annotated by feature-based functionalmodule
analysis (FFMA), we used the in-house library (provided by the case
study paper at https://metid.tidymass.org/articles/public_databases)
for the evaluation. Among the 614 FFMA annotated features, 8 features
can be found in the in-house annotated results. We further compared
the FFMA annotated metabolites with the library and found that 5
features can successfully match with the library annotations (Supple-
mentary Fig. 6a–e). For the remaining 3 features, we collected biolo-
gical descriptions from Pubmed and HMDB database for the FFMA
annotations and true annotations. Then we transferred these text
information into embeddings with the OpenAI embedding model
(text-embedding-ada-002) and calculated their cosine similarity to
represent the biological similarity between the true annotations and
the FFMA annotations (Supplementary Fig. 6f).

Sample preparation and analytical conditions for the case study
This study reanalyzeddata fromapreviously published investigation70,
with no new LC-MS metabolomics data generated. Comprehensive
details of sample preparation and analytical conditions are available in
our previous publication70.

In brief, we analyzed 346 urine samples collected longitudinally
from 36 ethnically diverse women throughout pregnancy (11.8-
40.7 weeks) and postpartum. Gestational age was determined follow-
ing the guidelines of the American Congress of Obstetricians and
Gynecologists. All samples were random spot urine collections rather
than 24-hour collections.

For sample preparation, urine samples were thawed and cen-
trifuged at 17,000 × g for 10min. We diluted 250μL of supernatant
with 750μL internal standard mixture, vortexed for 10 seconds, and
centrifuged at 17,000 × g for 10min at 4 °C. The resulting supernatant
was used for LC-MS analysis.

A pooled quality control (QC) sample was injected every 10 sam-
ples to monitor retention time stability and signal intensity.

Data processing began with the conversion of MS raw data (.raw)
to.mzXML (MS1) and.mgf format (QC MS2 spectra data) using Pro-
teoWizard software. The.mzXML files were organized into three cate-
gories (“Blank,” “QC,” and “Subject”) before peak detection and
alignment using the metprocesser package. In the metprocesser pack-
age, raw data processing was performed using the xcms package,
which has been described in detail in our TidyMass work25. Peak
detection and alignment utilized the centWave algorithm in xcmswith
the following parameters: method = “centWave”; ppm = 15; snthr = 10;
peakwidth = c(5, 30); snthresh = 10; prefilter = c(3, 500);minifrac = 0.5;
mzdiff = 0.01; binSize = 0.025; and bw = 5. This generated anMS1 peak
table containing m/z, retention time, and peak abundances.

Data cleaning was performed using a masscleaner. We removed
peaks detected in fewer than 20%ofQC samples and excluded samples
withmore than50%missing values. The remainingmissing valueswere
imputed using the k-nearest neighbors algorithm. Peak intensities
were normalized by dividing by the mean peak intensity to minimize
intra-batch analytical variations. Finally, we performed batch correc-
tion using the ratio ofmeanpeak values between batches as correction
factors.

Metabolite annotation was performed using the metid package27.
Annotations made using our in-house database achieved level 1 con-
fidence according to Metabolomics Standards Initiative (MSI)
criteria112, while those made using public databases were classified as
level 227. In TidyMass and TidyMass2, we did not introduce a new
metabolite annotation algorithm; instead, we implemented the most
widely used and transparent approaches for metabolite annotation in
this field, namely based on (1) accuratemass (m/z), (2)MS2 spectra, and
(3) retention time (RT), and the annotations are clearly labeled
according to theMSI80. Specifically, level 1 annotations are based on in-
house reference libraries analyzed on the same LC system (m/
z +RT +MS2); level 2 usesMS2 libraries (m/z +MS2); and level 3 relies on
accurate mass (m/z) only. These annotation levels are explicitly pro-
vided in the TidyMass2 annotation output and described in detail in
our original TidyMass publication25.

Standard compound experiment
To further validate the four metabolites we annotated in the case
study, we acquired MS2 spectra for all four standards of compounds.
The four standard compounds, Imidacloprid, Propamocarb, N-Acet-
ylmannosamine, and Phloroglucinol, were purchased from Shanghai
Yuanye Bio-Technology Co., Ltd, China. For UHPLC–MS/MS analysis,
metabolites were separated on a Vanquish Flex UHPLC system
(Thermo Fisher Scientific) equipped with a Hypersil GOLD column (2.1
× 100mm, 1.9 μm). The UHPLC system was coupled to a Q Exactive
Plus mass spectrometer (Thermo Fisher Scientific, Rockford, IL)
operated in full scan MS/ddMS2 mode with a resolution of 70,000 for
MS and 17,500 for ddMS2. TheAGC target andmaximum injection time
were set to 1 × 106 and 100ms for full MS, and 2 × 105 and 50ms for
ddMS2, respectively. A heated ESI source was used in both positive
(3.5 kV) and negative (3.2 kV) ion modes, with a capillary temperature
of 320 °C and auxiliary gas heater temperature of 350 °C. Normalized
collision energies of 20%, 40% and 60% were applied.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The LC-MS metabolomics data analyzed in this study were obtained
from previously published studies70,93,96. The mass spectrometry
metabolomics data used in the Chronic Inflammatory Demyelinating
Polyradiculoneuropathy (CIDP) metabolomics study have been
deposited in the MetaboLights under Study ID MTBLS5828. The mass
spectrometry metabolomics data used in the Longitudinal pregnancy
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plasmametabolomics study have been deposited in theMetabolomics
Workbenchunder Project ID PR000918. Sourcedata are providedwith
this paper.

Code availability
This study utilized R version 4.4.1 and its associated packages for
software development, data processing, and statistical analysis. The
complete source code for TidyMass2 is freely available at GitHub
(https://github.com/tidymass) and Zenodo (https://doi.org/10.5281/
zenodo.17933544). All the databases (metabolites, pathways, and
metabolic network) are freely available at https://www.tidymass.org/
databases/. All code used for data processing, analysis, and visualiza-
tion in this study can be accessed at GitHub (https://github.com/
tidymass/tidymass2_manuscript) andZenodo (https://doi.org/10.5281/
zenodo.17935619).
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